首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   33篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   5篇
  2017年   7篇
  2016年   9篇
  2015年   18篇
  2014年   16篇
  2013年   41篇
  2012年   42篇
  2011年   51篇
  2010年   25篇
  2009年   18篇
  2008年   48篇
  2007年   59篇
  2006年   55篇
  2005年   51篇
  2004年   50篇
  2003年   39篇
  2002年   39篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   8篇
  1997年   8篇
  1996年   5篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1960年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有737条查询结果,搜索用时 78 毫秒
181.
TLR8-mediated NF-kappaB and IRF7 activation are abolished in human IRAK-deficient 293 cells and IRAK4-deficient fibroblast cells. Both wild-type and kinase-inactive mutants of IRAK and IRAK4, respectively, restored TLR8-mediated NF-kappaB and IRF7 activation in the IRAK- and IRAK4-deficient cells, indicating that the kinase activity of IRAK and IRAK4 is probably redundant for TLR8-mediated signaling. We recently found that TLR8 mediates a unique NF-kappaB activation pathway in human 293 cells and mouse embryonic fibroblasts, accompanied only by IkappaBalpha phosphorylation and not IkappaBalpha degradation, whereas interleukin (IL)-1 stimulation causes both IkappaBalpha phosphorylation and degradation. The intermediate signaling events mediated by IL-1 (including IRAK modifications and degradation and TAK1 activation) were not detected in cells stimulated by TLR8 ligands. TLR8 ligands trigger similar levels of IkappaBalpha phosphorylation and NF-kappaB and JNK activation in TAK1(-/-) mouse embryo fibroblasts (MEFs) as compared with wild-type MEFs, whereas lack of TAK1 results in reduced IL-1-mediated NF-kappaB activation and abolished IL-1-induced JNK activation. The above results indicate that although TLR8-mediated NF-kappaB and JNK activation are IRAK-dependent, they do not require IRAK modification and are TAK1-independent. On the other hand, TLR8-mediated IkappaBalpha phosphorylation, NF-kappaB, and JNK activation are completely abolished in MEKK3(-/-) MEFs, whereas IL-1-mediated signaling was only moderately reduced in these deficient MEFs as compared with wild-type cells. The differences between IL-1R- and TLR8-mediated NF-kappaB activation are also reflected at the level of IkappaB kinase (IKK) complex. TLR8 ligands induced IKKgamma phosphorylation, whereas IKKalpha/beta phosphorylation and IKKgamma ubiquitination that can be induced by IL-1 were not detected in cells treated with TLR8 ligands. We postulate that TLR8-mediated MEKK3-dependent IKKgamma phosphorylation might play an important role in the activation of IKK complex, leading to IkappaBalpha phosphorylation.  相似文献   
182.
Legionella pneumophila is an intracellular bacterium that causes an acute form of pneumonia called Legionnaires' disease. After infection of human macrophages, the Legionella-containing phagosome (LCP) avoids fusion with the lysosome allowing intracellular replication of the bacterium. In macrophages derived from most mouse strains, the LCP is delivered to the lysosome resulting in Legionella degradation and restricted bacterial growth. Mouse macrophages lacking the NLR protein Ipaf or its downstream effector caspase-1 are permissive to intracellular Legionella replication. However, the mechanism by which Ipaf restricts Legionella replication is not well understood. Here we demonstrate that the presence of flagellin and a competent type IV secretion system are critical for Legionella to activate caspase-1 in macrophages. Activation of caspase-1 in response to Legionella infection also required host Ipaf, but not TLR5. In the absence of Ipaf or caspase-1 activation, the LCP acquired endoplasmic reticulum-derived vesicles, avoided fusion with the lysosome, and allowed Legionella replication. Accordingly a Legionella mutant lacking flagellin did not activate caspase-1, avoided degradation, and replicated in wild-type macrophages. The regulation of phagosome maturation by Ipaf occurred within 2 h after infection and was independent of macrophage cell death. In vivo studies confirmed that flagellin and Ipaf play an important role in the control of Legionella clearance. These results reveal that Ipaf restricts Legionella replication through the regulation of phagosome maturation, providing a novel function for NLR proteins in host defense against an intracellular bacterium.  相似文献   
183.
TLR1- and TLR6-independent recognition of bacterial lipopeptides   总被引:9,自引:0,他引:9  
Bacterial cell walls contain lipoproteins/peptides, which are strong modulators of the innate immune system. Triacylated lipopeptides are assumed to be recognized by TLR2/TLR1-, whereas diacylated lipopeptides use TLR2/TLR6 heteromers for signaling. Following our initial discovery of TLR6-independent diacylated lipopeptides, we could now characterize di- and triacylated lipopeptides (e.g. Pam(2)C-SK(4), Pam(3)C-GNNDESNISFKEK), which have stimulatory activity in TLR1- and in TLR6-deficient mice. Furthermore, for the first time, we present triacylated lipopeptides with short length ester-bound fatty acids (like PamOct(2)C-SSNASK(4)), which induce no response in TLR1-deficient cells. No differences in the phosphorylation of MAP kinases by lipopeptide analogs having different TLR2-coreceptor usage were observed. Blocking experiments indicated that different TLR2 heteromers recognize their specific lipopeptide ligands independently from each other. In summary, a triacylation pattern is necessary but not sufficient to render a lipopeptide TLR1-dependent, and a diacylation pattern is necessary but not sufficient to render a lipopeptide TLR6-dependent. Contrary to the current model, distinct lipopeptides are recognized by TLR2 in a TLR1- and TLR6-independent manner.  相似文献   
184.
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.  相似文献   
185.
We have previously reported that mouse plasmacytoid dendritic cells (DC) produce high levels of IL-12p70, whereas bone marrow-derived myeloid DC and splenic DC produce substantially lower levels of this cytokine when activated with the TLR-9 ligand CpG. We now show that in response to CpG stimulation, high levels of IL-10 are secreted by macrophages, intermediate levels by myeloid DC, but no detectable IL-10 is secreted by plasmacytoid DC. MyD88-dependent TLR signals (TLR4, 7, 9 ligation), Toll/IL-1 receptor domain-containing adaptor-dependent TLR signals (TLR3, 4 ligation) as well as non-TLR signals (CD40 ligation) induced macrophages and myeloid DC to produce IL-10 in addition to proinflammatory cytokines. IL-12p70 expression in response to CpG was suppressed by endogenous IL-10 in macrophages, in myeloid DC, and to an even greater extent in splenic CD8alpha(-) and CD8alpha(+) DC. Although plasmacytoid DC did not produce IL-10 upon stimulation, addition of this cytokine exogenously suppressed their production of IL-12, TNF, and IFN-alpha, showing trans but not autocrine regulation of these cytokines by IL-10 in plasmacytoid DC.  相似文献   
186.
PGE(2) acts as a potent stimulator of bone resorption in several disorders including osteoarthritis and periodontitis. Three PGE synthases (PGES) were isolated for PGE(2) production, but which PGES has the major role in inflammatory bone resorption is still unclear. In this study, we examined the role of PGE(2) in LPS-induced bone resorption using membrane-bound PGES (mPGES)-1-deficient mice (mPges1(-/-)). In osteoblasts from wild-type mice, PGE(2) production was greatly stimulated by LPS following the expression of cyclooxygenase 2 and mPGES-1 mRNA, whereas no PGE(2) production was found in osteoblasts from mPges1(-/-). LPS administration reduced the bone volume in wild-type femur that was associated with an increased number of osteoclasts. In mPges1(-/-), however, LPS-induced bone loss was reduced. We next examined whether mPGES-1 deficiency could alter the alveolar bone loss in LPS-induced experimental periodontitis. LPS was injected into the lower gingiva and bone mineral density of alveolar bone was measured. LPS induced the loss of alveolar bone in wild-type, but not in mPges1(-/-) mice, suggesting an mPGES-1 deficiency resistant to LPS-induced periodontal bone resorption. To understand the pathway of LPS-induced PGE(2) production in osteoblast, we used C3H/HeJ mice with mutated tlr4. Osteoblasts from C3H/HeJ mice did not respond to LPS, and PGE(2) production was not altered at all. LPS-induced bone loss in the femur was also impaired in C3H/HeJ mice. Thus, LPS binds to TLR4 on osteoblasts that directly induce mPGES-1 expression for PGE(2) synthesis, leading to subsequent bone resorption. Therefore, mPGES-1 may provide a new target for the treatment of inflammatory bone disease.  相似文献   
187.
The Ubc13 E2 ubiquitin-conjugating enzyme is essential for BCR-, TLR-, and IL-1 receptor (IL-1R)-mediated immune responses. Although Ubc13-deficient mice show defects in BCR-, TLR/IL-1R-, or CD40-mediated activation of mitogen-activated protein kinases, the function of Ubc13 in TCR-mediated signaling and responses remains uncertain. To address this, we here generated T cell-specific conditional Ubc13-deficient mice. The frequency of T lymphocytes was severely reduced in spleens from Ubc13-deficient mice. Moreover, Ubc13-deficient thymocytes displayed defective proliferation in response to anti-CD3/CD28 or PMA/ionophore stimulation. Regarding the signal transduction, although NF-kappaB activation was modestly affected, PMA/ionophore-induced activation of Jnk and p38 was profoundly impaired in Ubc13-deficient thymocytes. In addition, PMA/ionophore-mediated ubiquitination of NF-kappaB essential modulator (NEMO)/IkappaB kinase gamma (IKKgamma) and phosphorylation of TGF-beta-activated kinase 1 (TAK1) were nearly abolished in Ubc13-deficient thymocytes. Thus, Ubc13 plays an important role in thymocyte TCR-mediated signaling and immune responses.  相似文献   
188.
Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen in both developing and industrialized countries. AatA, an outer-membrane protein that is a homolog of E. coli TolC, facilitates the export of the dispersin protein Aap across the outer membrane in EAEC. To identify which amino acids are important for this export activity, site-directed mutagenesis of the carboxy terminus was performed. An insertional mutant of aatA was complemented with each of several deletion mutants, and was examined for Aap secretion. The results showed that three nonpolar amino acids at positions 381-383 (Phe-Leu-Leu) were required for the activity, and these residues were located at the base of carboxy-terminal elongation in the equatorial domain of AatA.  相似文献   
189.
IL-18 is an important cofactor in Th1 immune responses and it has additional roles in inflammation. Recent reports suggest the contribution of IL-18 to immune responses may vary between mouse strains and immune contexts. We investigated the contribution of IL-18 to T-cell activation and joint inflammation in Ag-induced arthritis (AIA) in C57Bl/6 mice. AIA and cutaneous delayed-type hypersensitivity (DTH) reactions were induced in wild-type (WT) and IL-18-/- C57Bl/6 mice, and Ag-specific T-cell proliferation and IFN-gamma and IL-4 production were measured. The humoral immune response was measured as serum antibody to the disease-initiating Ag, methylated BSA (mBSA). Splenocyte production of IL-6 was measured by ELISA. To confirm the dependence of this model on Th1-cell-mediated immunity, IL-12p40-/- mice were similarly studied. WT mice developed synovitis, joint effusion, cartilage destruction and bone damage associated with induction of DTH, and in vitro Ag-specific T-cell proliferation and IFN-gamma production. Unexpectedly, IL-18-/- mice developed AIA and indices of T-cell activation were similar to those of WT mice. In contrast, IL-12p40-/- mice did not develop AIA, DTH or T-cell activation. WT and IL-18-/- mice, but not IL-12p40-/- mice, developed significantly increased serum antibody to mBSA compared with naive controls. WT and IL-18-/- splenocytes produced high levels of IL-6, whereas IL-12p40-/- cells had significantly lower IL-6 production compared with both. In conclusion, IL-18 is redundant both as a Th1 response cofactor and inflammatory cytokine, whereas IL-12p40-/- is a key cytokine, in AIA in C57Bl/6 mice.  相似文献   
190.
Interleukin (IL)-32 is a recently described proinflammatory cytokine characterized by the induction of nuclear factor (NF)-κB activation. We studied IL-32 expression in human pancreatic tissue and pancreatic cancer cell lines. Tissue samples were obtained surgically. IL-32 expression was evaluated by standard immunohistochemical procedures. IL-32 mRNA expression was analyzed by Northern blotting and real time PCR analyses. IL-32 was weakly immunoexpressed by pancreatic duct cells. In the inflamed lesions of chronic pancreas, the ductal expression of IL-32 was markedly increased. A strong expression of IL-32α was detected in the pancreatic cancer cells. In pancreatic cancer cell lines (PANC-1, MIA PaCa-2, and BxPC-3 cells), the expression of IL-32 mRNA and protein was enhanced by IL-1β, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. An inhibitor of phosphatidylinositol 3-kinase (LY294002) significantly suppressed the IL-1β-, IFN-γ- and TNF-α-induced IL-32 mRNA expression. The blockade of NF-κB and activated protein-1 activation markedly suppressed the IL-1β-, IFN-γ-, and/or TNF-α-induced IL-32 mRNA expression. Furthermore, IL-32-specific small interfering RNA significantly decreased the uptake of [3H]thymidine and increased the annexin V-positive population (apoptotic cells) in PANC-1 cells. IL-32 knockdown also suppressed the mRNA expression of antiapoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1). Pancreatic duct cells are the local source of IL-32, and IL-32 may play an important role in inflammatory responses and pancreatic cancer growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号