全文获取类型
收费全文 | 499篇 |
免费 | 23篇 |
国内免费 | 1篇 |
专业分类
523篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 1篇 |
2019年 | 4篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 9篇 |
2014年 | 7篇 |
2013年 | 26篇 |
2012年 | 28篇 |
2011年 | 38篇 |
2010年 | 18篇 |
2009年 | 11篇 |
2008年 | 39篇 |
2007年 | 50篇 |
2006年 | 51篇 |
2005年 | 44篇 |
2004年 | 47篇 |
2003年 | 30篇 |
2002年 | 30篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 6篇 |
1998年 | 7篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1989年 | 5篇 |
1988年 | 5篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1966年 | 1篇 |
1960年 | 1篇 |
1955年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有523条查询结果,搜索用时 13 毫秒
71.
Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury
Obata K Katsura H Miyoshi K Kondo T Yamanaka H Kobayashi K Dai Y Fukuoka T Akira S Noguchi K 《Journal of neurochemistry》2008,105(6):2249-2259
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain. 相似文献
72.
Yasuda K Richez C Maciaszek JW Agrawal N Akira S Marshak-Rothstein A Rifkin IR 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(11):6876-6885
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases. 相似文献
73.
Matsumiya S Yamaguchi Y Saito J Nagano M Sasakawa H Otaki S Satoh M Shitara K Kato K 《Journal of molecular biology》2007,368(3):767-779
Removal of the fucose residue from the oligosaccharides attached to Asn297 of human immunoglobulin G1 (IgG1) results in a significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) via improved IgG1 binding to Fcgamma receptor IIIa. To provide structural insight into the mechanisms of affinity enhancement, we determined the crystal structure of the nonfucosylated Fc fragment and compared it with that of fucosylated Fc. The overall conformations of the fucosylated and nonfucosylated Fc fragments were similar except for hydration mode around Tyr296. Stable-isotope-assisted NMR analyses confirmed the similarity of the overall structures between fucosylated and nonfucosylated Fc fragments in solution. These data suggest that the glycoform-dependent ADCC enhancement is attributed to a subtle conformational alteration in a limited region of IgG1-Fc. Furthermore, the electron density maps revealed that the traces between Asp280 and Asn297 of our fucosylated and nonfucosylated Fc crystals were both different from that in previously reported isomorphous Fc crystals. 相似文献
74.
Power MR Li B Yamamoto M Akira S Lin TJ 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(5):3170-3176
Toll-IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) is an adaptor molecule that mediates a distinct TLR signaling pathway. Roles of TRIF in the host defense have been primarily associated with virus infections owing to the induction of IFN-alphabeta. In this study, we investigated a role of TRIF in Pseudomonas aeruginosa infection. In vitro, TRIF-deficient mouse alveolar and peritoneal macrophages showed a complete inhibition of RANTES (CCL5) production, severely impaired TNF and KC (CXCL1) production, and reduced NF-kappaB activation in response to P. aeruginosa stimulation. In vivo, TRIF-deficient mice showed a complete inhibition of RANTES production, a severely impaired TNF and KC production, and an efficient MIP-2 and IL-1beta production in the lung following P. aeruginosa infection. This outcome was associated with a delayed recruitment of neutrophils into the airways. These results suggest that TRIF mediates a distinct cytokine/chemokine profile in response to P. aeruginosa infection. P. aeruginosa-induced RANTES production is completely dependent on TRIF pathway in mice. Importantly, TRIF deficiency leads to impaired clearance of P. aeruginosa from the lung during the initial 24-48 h of infection. Thus, TRIF represents a novel mechanism involved in the development of host response to P. aeruginosa infection. 相似文献
75.
Identification of a key pathway required for the sterile inflammatory response triggered by dying cells 总被引:8,自引:0,他引:8
Dying cells stimulate inflammation, and this response is thought to contribute to the pathogenesis of many diseases. Very little has been known, however, about how cell death triggers inflammation. We found here that the acute neutrophilic inflammatory response to cell injury requires the signaling protein myeloid differentiation primary response gene 88 (Myd88). Analysis of the contribution of Myd88-dependent receptors to this response revealed only a minor reduction in mice doubly deficient in Toll-like receptor 2 (Tlr2) and Tlr4 and normal responses in mice lacking Tlr1, Tlr3, Tlr6, Tlr7, Tlr9, Tlr11 or the interleukin-18 receptor (IL-18R). However, mice lacking IL-1R showed a markedly reduced neutrophilic inflammatory response to dead cells and tissue injury in vivo as well as greatly decreased collateral damage from inflammation. This inflammatory response required IL-1alpha, and IL-1R function was required on non-bone-marrow-derived cells. Notably, the acute monocyte response to cell death, which is thought to be important for tissue repair, was much less dependent on the IL-1R-Myd88 pathway. Also, this pathway was not required for the neutrophil response to a microbial stimulus. These findings suggest that inhibiting the IL-1R-Myd88 pathway in vivo could block the damage from acute inflammation that occurs in response to sterile cell death, and do so in a way that might not compromise tissue repair or host defense against pathogens. 相似文献
76.
Albiger B Dahlberg S Sandgren A Wartha F Beiter K Katsuragi H Akira S Normark S Henriques-Normark B 《Cellular microbiology》2007,9(3):633-644
Toll-like receptor 9 (TLR9) induces an inflammatory response by recognition of unmethylated CpG dinucleotides, mainly present in prokaryotic DNA. So far, TLR9-deficient mice have been shown to be more sensitive than wild-type mice to viral, but not to bacterial infections. Here, we show that mice deficient in TLR9 but not in TLR1, TLR2, TLR4 and TLR6 or IL-1R/IL-18R are more susceptible to a respiratory tract bacterial infection caused by Streptococcus pneumoniae. Intranasal challenge studies revealed that TLR9 plays a protective role in the lungs at an early stage of infection prior to the entry of circulating inflammatory cells. Alveolar as well as bone marrow-derived macrophages deficient in either TLR9 or the myeloid adaptor differentiation protein MyD88 were impaired in pneumococcal uptake and in pneumococcal killing. Our data suggest that in the airways, pneumococcal infection triggers a TLR9 and MyD88-dependent activation of phagocytic activity from resident macrophages leading to an early clearance of bacteria from the lower respiratory tract. 相似文献
77.
78.
79.
80.
Noor S Goldfine H Tucker DE Suram S Lenz LL Akira S Uematsu S Girotti M Bonventre JV Breuel K Williams DL Leslie CC 《The Journal of biological chemistry》2008,283(8):4744-4755
Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2alpha). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (DeltahlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and DeltahlyLM. The attenuated release of arachidonic acid that is observed in TLR2-/- and MyD88-/- macrophages infected with WTLM and DeltahlyLM correlates with diminished MAPK activation. WTLM but not DeltahlyLM increases intracellular calcium, which is implicated in regulation of cPLA2alpha. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2alpha+/+ but not cPLA2alpha-/- macrophages in response to WTLM and DeltahlyLM. Tumor necrosis factor (TNF)-alpha production is significantly lower in cPLA2alpha+/+ than in cPLA2alpha-/- macrophages infected with WTLM and DeltahlyLM. Treatment of infected cPLA2alpha+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFalpha production to the level produced by cPLA2alpha-/- macrophages implicating prostaglandins in TNFalpha down-regulation. Therefore activation of cPLA2alpha in macrophages may impact immune responses to L. monocytogenes. 相似文献