首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   22篇
  351篇
  2022年   3篇
  2021年   6篇
  2019年   3篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   10篇
  2013年   9篇
  2012年   17篇
  2011年   9篇
  2010年   10篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   5篇
  2001年   13篇
  2000年   10篇
  1999年   15篇
  1997年   3篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   9篇
  1990年   13篇
  1989年   4篇
  1988年   4篇
  1987年   12篇
  1986年   3篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   7篇
  1972年   8篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
101.
Photosynthesis Research - Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining...  相似文献   
102.
Xenophagy, also known as antibacterial autophagy, plays a role in host defence against invading pathogens such as Group A Streptococcus (GAS) and Salmonella. In xenophagy, autophagy receptors are used in the recognition of invading pathogens and in autophagosome maturation and autolysosome formation. However, the mechanism by which autophagy receptors are regulated during bacterial infection remains poorly elucidated. In this study, we identified LAMTOR2 and LAMTOR1, also named p14 and p18, respectively, as previously unrecognised xenophagy regulators that modulate the autophagy receptor TAX1BP1 in response to GAS and Salmonella invasion. LAMTOR1 was localized to bacterium‐containing endosomes, and LAMTOR2 was recruited to bacterium‐containing damaged endosomes in a LAMTOR1‐dependent manner. LAMTOR2 was dispensable for the formation of autophagosomes targeting damaged membrane debris surrounding cytosolic bacteria, but it was critical for autolysosome formation, and LAMTOR2 interacted with the autophagy receptors NBR1, TAX1BP1, and p62 and was necessary for TAX1BP1 recruitment to pathogen‐containing autophagosomes. Notably, knockout of TAX1BP1 caused a reduction in autolysosome formation and subsequent bacterial degradation. Collectively, our findings demonstrated that the LAMTOR1/2 complex is required for recruiting TAX1BP1 to autophagosomes and thereby facilitating autolysosome formation during bacterial infection.  相似文献   
103.
Autophagy plays a crucial role in host defence by facilitating the degradation of invading bacteria such as Group A Streptococcus (GAS). GAS‐containing autophagosome‐like vacuoles (GcAVs) form when GAS‐targeting autophagic membranes entrap invading bacteria. However, the membrane origin and the precise molecular mechanism that underlies GcAV formation remain unclear. In this study, we found that Rab17 mediates the supply of membrane from recycling endosomes (REs) to GcAVs. We showed that GcAVs contain the RE marker transferrin receptor (TfR). Colocalization analyses demonstrated that Rab17 colocalized effectively with GcAV. Rab17 and TfR were visible as punctate structures attached to GcAVs and the Rab17‐positive dots were recruited to the GAS‐capturing membrane. Overexpression of Rab17 increased the TfR‐positive GcAV content, whereas expression of the dominant‐negative Rab17 form (Rab17 N132I) caused a decrease, thereby suggesting the involvement of Rab17 in RE–GcAV fusion. The efficiency of GcAV formation was lower in Rab17 N132I‐overexpressing cells. Furthermore, knockdown of Rabex‐5, the upstream activator of Rab17, reduced the GcAV formation efficiency. These results suggest that Rab17 and Rab17‐mediated REs are involved in GcAV formation. This newly identified function of Rab17 in supplying membrane from REs to GcAVs demonstrates that RE functions as a primary membrane source during antibacterial autophagy.  相似文献   
104.
The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE(LB400)) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE(LB400) and obtained BphAE(RR41). This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE(LB400). However, the regiospecificity of BphAE(RR41) toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE(RR41) obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE(RR41):dibenzofuran. In BphAE(RR41):2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE(RR41):dibenzofuran, and strong enough in the BphAE(RR41):2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.  相似文献   
105.
Vasohibin is thought to be an important negative feedback regulator of angiogenesis that is selectively induced in endothelial cells by VEGF. Here, we assessed the role of vasohibin on HIF-1α expression under oxidative stress induced by hydrogen peroxide (H2O2) in HUVEC. VEGF induced significant cell growth that was associated with an increase in vasohibin expression. Following H2O2-pretreatment, VEGF further increased cell growth but this was contrastingly associated with a decrease in vasohibin expression when compared with VEGF alone. Interestingly, vasohibin inhibited cell proliferation through degradation of HIF-1α expression during H2O2-pretreatment. Furthermore, vasohibin elevated the expression of prolyl hydroxylase (PHD). These results suggest that vasohibin plays crucial roles as a negative feedback regulator of angiogenesis through HIF-1α degradation via PHD.  相似文献   
106.
Adhesion molecules on endothelial cells are known to be important ligands for malaria infected red blood cells (PRBC) [Mol Biochem Parasitol, 76, (1996) 1], and may be involved in the pathogenic process of cerebral malaria (CM) which is the most serious complication of falciparum malaria, through enhancing micro embolism or sequestration in the capillaries of the brain. PECAM-1/CD31 is one of these candidate ligands and is coded by a polymorphic gene. Two hundred and ten Thai malaria patients (43 cerebral, 89 severe and 78 uncomplicated) were analyzed for their genetic polymorphism of CD31 to examine the clinical relationship between the disease and specific genotypes. Four alleles were defined 125 valine (V)-563 asparagine (N); 125V-563 serine (S); 125 leucine (L)-563N; and 125L-563S. We found that the frequency of the 125 V/V 563 N/N genotype was significantly high in CM patients as compared with severe cases without CM (P<0.01, OR=2.92), suggesting that this genotype is one of the risk factors for CM.  相似文献   
107.
108.
Ueno  Yoshifumi  Aikawa  Shimpei  Niwa  Kyosuke  Abe  Tomoko  Murakami  Akio  Kondo  Akihiko  Akimoto  Seiji 《Photosynthesis research》2017,133(1-3):235-243
Photosynthesis Research - The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting...  相似文献   
109.
110.
Two pectate lyase genes (Bx-pel-1 and Bx-pel-2) were cloned from the pine wood nematode, Bursaphelenchus xylophilus. The deduced amino acid sequences of these pectate lyases are most similar to polysaccharide lyase family 3 proteins. Recombinant BxPEL1 showed highest activity on polygalacturonic acid and lower activity on more highly methylated pectin. Recombinant BxPEL1 demonstrated full dependency on Ca2+ for activity and optimal activity at 55 degrees C and pH 8 to 10 like other pectate lyases of polysaccharide lyase family 3. The protein sequences have predicted signal peptides at their N-termini and the genes are expressed solely in the esophageal gland cells of the nematode, indicating that the pectate lyases could be secreted into plant tissues to help feeding and migration in the tree. This study suggests that pectate lyases are widely distributed in plant-parasitic nematodes and play an important role in plant-nematode interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号