首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   13篇
  2023年   4篇
  2022年   11篇
  2021年   12篇
  2020年   5篇
  2019年   7篇
  2018年   11篇
  2017年   5篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   22篇
  2012年   26篇
  2011年   18篇
  2010年   9篇
  2009年   8篇
  2008年   13篇
  2007年   12篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2000年   3篇
  1998年   1篇
  1995年   2篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
71.
The problem of diffusion of O(2) across the endothelial surface in precapillary vessels and its utilization in the vascular wall remains unresolved. To establish a relationship between precapillary release of O(2) and vascular wall consumption, we estimated the intravascular flux of O(2) on the basis of published in vivo measurements. To interpret the data, we utilized a diffusion model of the vascular wall and computed possible physiological ranges for O(2) consumption. We found that many flux values were not consistent with the diffusion model. We estimated the mitochondrial-based maximum O(2) consumption of the vascular wall (M(mt)) and a possible contribution to O(2) consumption of nitric oxide production by endothelial cells (M(NO)). Many values of O(2) consumption predicted from the diffusion model exceeded M(mt) + M(NO). In contrast, reported values of O(2) consumption for endothelial and smooth muscle cell suspensions and vascular strips in vitro do not exceed M(mt). We conjecture that most of the reported values of intravascular O(2) flux are overestimated, and the likely source is in the experimental estimates of convective O(2) transport at upstream and downstream points of unbranched vascular segments.  相似文献   
72.
73.

Background

Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells.

Methodology/Principal Findings

Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.

Conclusion/Significance

Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point.  相似文献   
74.
Recent genome-wide association studies have revealed an association between variation at the ADAMTS7 locus and susceptibility to coronary artery disease (CAD). Furthermore, in a population-based study cohort, we observed an inverse association between atherosclerosis prevalence and rs3825807, a nonsynonymous SNP (A to G) leading to a Ser-to-Pro substitution in the prodomain of the protease ADAMTS7. In light of these data, we sought a mechanistic explanation for this association. We found that ADAMTS7 accumulated in smooth muscle cells in coronary and carotid atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) of the G/G genotype for rs3825807 had reduced migratory ability, and conditioned media of VSMCs of the G/G genotype contained less of the cleaved form of thrombospondin-5, an ADAMTS7 substrate that had been shown to be produced by VSMCs and inhibit VSMC migration. Furthermore, we found that there was a reduction in the amount of cleaved ADAMTS7 prodomain in media conditioned by VSMCs of the G/G genotype and that the Ser-to-Pro substitution affected ADAMTS7 prodomain cleavage. The results of our study indicate that rs3825807 has an effect on ADAMTS7 maturation, thrombospondin-5 cleavage, and VSMC migration, with the variant associated with protection from atherosclerosis and CAD rendering a reduction in ADAMTS7 function.  相似文献   
75.
Biodegradation studies of Gum ghatti (Gg) and acrylamide-co-acrylic acid based flocculants [Gg-cl-poly(AAm-co-AA)] have been reported using the soil composting method. Gg-cl-poly(AAm-co-AA) was found to degrade 89.76% within 60 days. The progress of biodegradation at each stage was monitored through FT-IR and SEM. Polymer was synthesized under pressure using potassium persulphate-ascorbic acid as a redox initiator and N,N′-methylene-bis-acrylamide as a crosslinker. Synthesized polymer was found to show pH, temperature and ionic strength of the cations dependent swelling behavior. Gg-cl-poly(AAm-co-AA) was utilized for the selective absorption of saline from different petroleum fraction-saline emulsions. The flocculation efficiency of the polymer was studied as a function of polymer dose, temperature and pH of the solution. Gg-cl-poly(AAm-co-AA) showed maximum flocculation efficiency with 20 mol L−1 polymer dose in acidic medium at 50 °C.  相似文献   
76.
77.
Hesperidin (HESP), a flavanone glycoside, shows high antioxidant properties and posses ability to go through the blood–brain barrier. Therefore, it could be a potential drug molecule against aggregation based diseases such as Alzheimer’s, Parkinson’s, and systemic amyloidoses. In this work, we investigated the potential of HESP to interact with hen egg-white lysozyme (HEWL) monomer and prevent its aggregation. The HESP–HEWL binding studies were performed using a fluorescence quenching technique, molecular docking and molecular dynamics simulations. We found a strong interaction of HESP with the lysozyme monomer (Ka, ~ 5 × 104 M?1) mainly through hydrogen bonding, water bridges, and hydrophobic interactions. We showed that HESP molecule spanned the highly aggregation prone region (amino acid residues 48-101) of HEWL and prevented its fibrillar aggregation. Further, we found that HESP binding completely inhibited amorphous aggregation of the protein induced by disulfide-reducing agent tries-(2-carboxyethyl) phosphine. Conformational and stability studies as followed by various tertiary and secondary structure probes revealed that HESP binding only marginally affected the lysozyme monomer conformation and increased both stability and reversibility of the protein against thermal denaturation. Future studies should investigate detail effects of HESP on solvent dynamics, structure, and toxicity of various aggregates. The answers to these questions will not only target the basic sciences, but also have application in biomedical and biotechnological sciences.  相似文献   
78.
79.
The resonance Raman spectra of the Pr state of the N-terminal 65-kDa fragment of plant phytochrome phyA have been measured and analyzed in terms of the configuration and conformation of the tetrapyrroles methine bridges. Spectra were obtained from phyA adducts reconstituted with the natural chromophore phytochromobilin as well as phycocyanobilin and its isotopomers labeled at the terminal methine bridges through (13)C/(12)C and D/H substitution. Upon comparing the resonance Raman spectra of the various phyA adducts, it was possible to identify the bands that originate from normal modes dominated by the stretching coordinates of the terminal methine bridges A-B and C-D. Quantum chemical calculations of the isolated tetrapyrroles reveal that these modes are sensitive indicators for the methine bridge configuration and conformation. For all phyA adducts, the experimental spectra of Pr including this marker band region are well reproduced by the calculated spectra obtained for the ZZZasa configuration. In contrast, there are substantial discrepancies between the experimental spectra and the spectra calculated for the ZZZssa configuration, which has been previously shown to be the chromophore geometry in the Pr state of the bacterial, biliverdin-binding phytochrome from Deinococcus radiodurans (Wagner, J. R., J. S. Brunzelle, K. T. Forest, R. D. Vierstra. 2005. Nature. 438:325-331). The results of this work, therefore, suggest that plant and bacterial (biliverdin-binding) phytochromes exhibit different structures in the parent state although the mechanism of the photoinduced reaction cycle may be quite similar.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号