首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   13篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   7篇
  2018年   11篇
  2017年   5篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   22篇
  2012年   26篇
  2011年   18篇
  2010年   9篇
  2009年   8篇
  2008年   13篇
  2007年   12篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2000年   3篇
  1998年   1篇
  1995年   2篇
排序方式: 共有224条查询结果,搜索用时 31 毫秒
101.

Background

Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site.

Methods

In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential.

Results

The final proteolytic step of PfSERA5 involves removal of a C-terminal ~ 6 kDa fragment that results in the generation of a catalytically active ~ 50 kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~ 6 kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5.

Conclusions

Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress.

General significance

These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~ 6 kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.  相似文献   
102.
103.
Drug development in visceral leishmaniasis is extremely vital as the existing therapeutic modalities are plagued by the unwanted twosome of toxicity and drug resistance. Antineoplastic drugs have in the past been effective against the parasitic infections, for example, miltefosine. Cisplatin is a first-generation platinum-containing drug, used in the treatment of various solid tumors. Its in vitro antileishmanial effect has already been demonstrated. In the present study, the leishmanicidal potential of two doses (0.5 mg/kg body weight and 1 mg/kg body weight) of the drug was studied in BALB/c mice. The antileishmanial effect of the drug was revealed by significant reduction in the parasite burden. The infected and treated animals were also found to exhibit increased DTH responses. An initial transient and reversible increase in levels of SGOT, SGPT, BUN, blood urea, creatinine and phosphorus was observed in infected animals treated with both doses of the drug. The reduction in parasite load, increase in DTH response and various biochemical parameters were more pronounced in animals treated with 1 mg/kg body weight of cisplatin as compared to those treated with 0.5 mg/kg body weight of the drug. Though some histopathological changes were observed in the kidneys of animals treated with 1 mg/kg body weight of cisplatin, no such change was observed in mice treated with the lower dose. Thus, we have for the first time characterized the in vivo effect of cisplatin in murine experimental visceral leishmaniasis.  相似文献   
104.
In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the function of Emp during hematopoiesis. Emp null embryos die perinatally and show profound alterations in the hematopoietic system. A dramatic increase in the number of nucleated, immature erythrocytes is seen in the peripheral blood of Emp null fetuses. In the fetal liver virtually no erythroblastic islands are observed, and the number of F4/80-positive macrophages is substantially reduced. Those present lack cytoplasmic projections and are unable to interact with erythroblasts. Interestingly, wild type macrophages can bind Emp-deficient erythroblasts, but these erythroblasts do not extrude their nuclei, suggesting that Emp impacts enucleation in a cell autonomous fashion. Previous studies have implicated the actin cytoskeleton and its reorganization in both erythroblast enucleation as well as in macrophage development. We demonstrate that Emp associates with F-actin and that this interaction is important in the normal distribution of F-actin in both erythroblasts and macrophages. Thus, Emp appears to be required for erythroblast enucleation and in the development of the mature macrophages. The availability of an Emp null model provides a unique experimental system to study the enucleation process and to evaluate the function of macrophages in definitive erythropoiesis.  相似文献   
105.
106.
107.
108.
109.
Ecdysteroids are steroid hormones, which coordinate major developmental transitions in insects. Both the rises and falls in circulating levels of active hormones are important for coordinating molting and metamorphosis, making both ecdysteroid biosynthesis and inactivation of physiological relevance. We demonstrate that Drosophila melanogaster Cyp18a1 encodes a cytochrome P450 enzyme (CYP) with 26-hydroxylase activity, a prominent step in ecdysteroid catabolism. A clear ortholog of Cyp18a1 exists in most insects and crustaceans. When Cyp18a1 is transfected in Drosophila S2 cells, extensive conversion of 20-hydroxyecdysone (20E) into 20-hydroxyecdysonoic acid is observed. This is a multi-step process, which involves the formation of 20,26-dihydroxyecdysone as an intermediate. In Drosophila larvae, Cyp18a1 is expressed in many target tissues of 20E. We examined the consequences of Cyp18a1 inactivation on Drosophila development. Null alleles generated by excision of a P element and RNAi knockdown of Cyp18a1 both result in pupal lethality, possibly as a consequence of impaired ecdysteroid degradation. Our data suggest that the inactivation of 20E is essential for proper development and that CYP18A1 is a key enzyme in this process.  相似文献   
110.
The reaction of the cyclometalated IrIII dimer [{(ppy)2Ir}2(μ-Cl)2] (ppyH = 2-phenylpyridine) with silver triflate followed by a multidentate ligand [1,4-bis[3-(2-pyridyl)pyrazolylmethyl]benzene (bppb), 1,3,5-tri[3-(2-pyridyl)pyrazolylmethyl]-2,4,6-trimethylbenzene (tppb), 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), 2-chloro-4,6-bis(dipyridin-2-ylamino)-1,3,5-triazine (cddt) or 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (tdat)] afforded di- or trinuclear compounds: [{Ir(ppy)2}2(μ-bppb)](OTf)2 (1), [{Ir(ppy)2}3(μ-tppb)](OTf)3 (2), [{Ir(ppy)2}2(μ-tptz-OH)](OTf) (3), [{Ir(ppy)2}2(μ-cddt)](OTf)2 (4) and [{Ir(ppy)2}2(μ-tdat)](OTf)2 (5). All of these compounds contain cationic metal cores with corresponding triflate counter anions. The molecular structures of 1-4 reveal that the structural feature of the Ir(ppy)2 center of the starting precursor is conserved in the products. Also, because of the nature of the ligands, there is virtually no electronic communication between the IrIII centers except in 3 where a ring hydroxylation at the triazine carbon atom is effected upon metalation. Compounds 1-5 are robust in solution where they retain their structural integrity. The UV-Vis and emission spectra of 1-5 compounds are very similar to each other with the exception of 3 which seems to possess a different electronic structure. All the compounds are luminescent at room temperature. The emission bands indicate significant contribution from 3LC. Increase in the number of ‘Ir(ppy)2’ units does not have any effect on emission color.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号