首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   13篇
  2023年   5篇
  2022年   11篇
  2021年   12篇
  2020年   5篇
  2019年   7篇
  2018年   11篇
  2017年   5篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   21篇
  2012年   26篇
  2011年   16篇
  2010年   8篇
  2009年   8篇
  2008年   11篇
  2007年   11篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2000年   1篇
  1998年   1篇
  1995年   2篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
41.
Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp265(6.48) with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the beta-ionone ring allows Trp265(6.48) and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265(6.48). The retinal C20-Trp265(6.48) contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 A toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp265(6.48) side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp265(6.48) and Gly121(3.36) is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly120(3.35) on H3 and Met86(2.53) on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.  相似文献   
42.

Background

Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.

Methodology/Principal Findings

MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of αVβ3, α6β1 and α9β1 integrins in xenograft cells. Treatment with bicistronic constructs reduced αVβ3, α6β1 and α9β1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.

Conclusions/Significance

Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma.  相似文献   
43.
Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of thaumarchaeal ammonia monooxygenase subunit A (AOA-amoA) gene. Different primer sets targeting 16S rRNA and AOA-amoA gene were used for the detection of AOA in FPETPs. Phylogenetic analysis of the gene revealed that the AOA was affiliated with thaumarchaeal group 1.1a lineage (marine cluster). Quantitative real time PCR of amoA gene was used to study the copy number of AOA and AOB in FPETPs. The AOA-amoA and AOB-amoA gene copy numbers of sludge samples ranged from 2.2 × 106 to 4.2 × 108 and 1.1 × 107 to 8.5 × 108 mg−1 sludge respectively. Primer sets Arch-amoAF/Arch-amoAR and 340F/1000R were found to be useful for the sensitive detection of AOA-amoA and Archaeal 16S rRNA genes respectively in FPETPs. Their presence suggests the widespread occurrence and possible usefulness in removing ammonia from FPETPs which is in line with reports from other waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0484-6) contains supplementary material, which is available to authorized users.  相似文献   
44.
Reversible phosphorylation is the key mechanism regulating several cellular events in prokaryotes and eukaryotes. In prokaryotes, signal transduction is perceived to occur primarily via the two-component signaling system involving histidine kinases and cognate response regulators. Although an alternative regulatory pathway controlled by the eukaryote-type serine/threonine kinase (Streptococcus pyogenes serine/threonine kinase; SP-STK) has been shown to modulate bacterial growth, division, adherence, invasion, and virulence in group A Streptococcus (GAS; S. pyogenes), the precise role of the co-transcribing serine/threonine phosphatase (SP-STP) has remained enigmatic. In this context, this is the first report describing the construction and characterization of non-polar SP-STP mutants in two different strains of Type M1 GAS. The STP knock-out mutants displayed increased bacterial chain lengths in conjunction with thickened cell walls, significantly reduced capsule and hemolysin production, and restoration of the phenotypes postcomplementation. The present study also reveals important contribution of cognately regulated-reversible phosphorylation by SP-STK/SP-STP on two major response regulators of two-component systems, WalRK and CovRS. We also demonstrate a distinct role of SP-STP in terms of expression of surface proteins and SpeB in a strain-specific manner. Further, the attenuation of virulence in the absence of STP and its restoration only in the complemented strains that were generated by the use of a low copy plasmid and not by a high copy one emphasize not only the essential role of STP in virulence but also highlight the tightly regulated SP-STP/SP-STK-mediated cognate functions. SP-STP thus is an important regulator of GAS virulence and plays a critical role in GAS pathogenesis.  相似文献   
45.
It has been advocated that biopharmaceutic risk assessment should be conducted early in pediatric product development and synchronized with the adult product development program. However, we are unaware of efforts to classify drugs into a Biopharmaceutics Classification System (BCS) framework for pediatric patients. The objective was to classify five drugs into a potential BCS. These five drugs were selected since both oral and intravenous pharmacokinetic data were available for each drug, and covered the four BCS classes in adults. Literature searches for each drug were conducted using Medline and applied to classify drugs with respect to solubility and permeability in pediatric subpopulations. Four pediatric subpopulations were considered: neonates, infants, children, and adolescents. Regarding solubility, dose numbers were calculated using a volume for each subpopulation based on body surface area (BSA) relative to 250 ml for a 1.73 m2 adult. Dose numbers spanned a range of values, depending upon the pediatric dose formula and subpopulation. Regarding permeability, pharmacokinetic literature data required assumptions and decisions about data collection. Using a devised pediatric BCS framework, there was agreement in adult and pediatric BCS class for two drugs, azithromycin (class 3) and ciprofloxacin (class 4). There was discordance for the three drugs that have high adult permeability since all pediatric permeabilities were low: dolasetron (class 3 in pediatric), ketoprofen (class 4 in pediatric), and voriconazole (class 4 in pediatric). A main contribution of this work is the identification of critical factors required for a pediatric BCS.  相似文献   
46.

Objective

We investigated the role of state-level differences in modifiable cardiovascular (CV) risk factors in contributing to state disparities in cardiovascular mortality rates in the US.

Methods

Adults aged 45–74 in 2010 were examined. We constructed a CV risk index summarizing state-level exposure to current smoking, obesity, physical inactivity, alcohol abstinence, hypertension, elevated cholesterol, and diabetes using the Behavioral Risk Factor Surveillance System. Outcomes were cardiovascular, coronary heart disease, and stroke mortality. Linear regression was used to estimate associations between the CV risk index and mortality outcomes. Models accounted for state-level socioeconomic characteristics and other potential confounders.

Results

Risk factors were highly correlated at the state-level (Cronbach''s alpha 0.85 (men) and 0.92 (women). Each +1SD difference in the cardiovascular risk index was associated with higher adjusted cardiovascular mortality rates by 41.0 (95%CI = 26.3, 55.7) and 33.3 (95%CI = 24.4, 42.2) deaths per 100,000 for men and women, respectively. The index accounted for 8% (men) and 11% (women) of the variation in state-level cardiovascular mortality. Comparable associations were also observed for coronary heart disease and stroke mortality.

Conclusions

CV risk factors were highly correlated at the state-level and were independently associated with state CV mortality, suggesting the utility of generalized CV risk reduction.  相似文献   
47.
48.
49.
During clathrin-mediated endocytosis Hsc70, supported by the J-domain protein auxilin, uncoats clathrin-coated vesicles. Auxilin contains both a clathrin-binding domain and a J-domain that binds Hsc70, and it has been suggested that these two domains are both necessary and sufficient for auxilin activity. To test this hypothesis, we created a chimeric protein consisting of the J-domain of auxilin linked to the clathrin-binding domain of the assembly protein AP180. This chimera supported uncoating, but unlike auxilin it acted stoichiometrically rather than catalytically because, like Hsc70, it remained associated with the uncoated clathrin. This observation supports our proposal that Hsc70 chaperones uncoated clathrin by inducing formation of a stable Hsc70-clathrin-AP complex. It also shows that Hsc70 acts by dissociating individual clathrin triskelions rather than cooperatively destabilizing clathrin-coated vesicles. Because the chimera lacks the C-terminal subdomain of the auxilin clathrin-binding domain, it seemed possible that this subdomain is required for auxilin to act catalytically, and indeed its deletion caused auxilin to act stoichiometrically. In contrast, deletion of the N-terminal subdomain weakened auxilin-clathrin binding and prevented auxilin from polymerizing clathrin. Therefore the C-terminal subdomain of the clathrin-binding domain of auxilin is required for auxilin to act catalytically, whereas the N-terminal subdomain strengthens auxilin-clathrin binding.  相似文献   
50.
Alkaline exonucleases (AE) are present in several large DNA viruses including bacteriophage λ and herpesviruses, where they play roles in viral DNA processing during genome replication. Given the genetic conservation of AEs across viruses infecting different kingdoms of life, these enzymes likely assume central roles in the lifecycles of viruses where they have yet to be well characterized. Here, we applied a structure-guided functional analysis of the bifunctional AE in the oncogenic human gammaherpesvirus Kaposi''s sarcoma-associated herpesvirus (KSHV), called SOX. In addition to identifying a preferred DNA substrate preference for SOX, we define key residues important for DNA binding and DNA processing, and how SOX activity on DNA partially overlaps with its functionally separable cleavage of mRNA. By engineering these SOX mutants into KSHV, we reveal roles for its DNase activity in viral gene expression and infectious virion production. Our results provide mechanistic insight into gammaherpesviral AE activity as well as areas of functional conservation between this mammalian virus AE and its distant relative in phage λ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号