首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   22篇
  2023年   6篇
  2022年   17篇
  2021年   29篇
  2020年   12篇
  2019年   23篇
  2018年   17篇
  2017年   9篇
  2016年   23篇
  2015年   22篇
  2014年   29篇
  2013年   35篇
  2012年   40篇
  2011年   33篇
  2010年   16篇
  2009年   15篇
  2008年   23篇
  2007年   21篇
  2006年   11篇
  2005年   20篇
  2004年   8篇
  2003年   10篇
  2002年   14篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有463条查询结果,搜索用时 46 毫秒
441.
442.
Human angiotensin-converting enzyme 2 (ACE2) is the primary host cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding and cell entry. Administration of high concentrations of soluble ACE2 can be utilized as a decoy to block the interaction of the virus with cellular ACE2 receptors and potentially be used as a strategy for treatment or prevention of coronavirus disease 2019. Human ACE2 is heavily glycosylated and its glycans impact on binding to the SARS-CoV-2 spike protein and virus infectivity. Here, we describe the production of a recombinant soluble ACE2-fragment crystallizable (Fc) variant in glycoengineered Nicotiana benthamiana. Our data reveal that the produced dimeric ACE2-Fc variant is glycosylated with mainly complex human-type N-glycans and functional with regard to enzyme activity, affinity to the SARS-CoV-2 receptor-binding domain, and wild-type virus neutralization.  相似文献   
443.
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein–protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database (https://www.wikipathways.org/index.php/Pathway:WP4874). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.Electronic supplementary materialThe online version of this article (10.1007/s12079-020-00592-1) contains supplementary material, which is available to authorized users.  相似文献   
444.
445.
Defect free mats containing a cationic polysaccharide, chitosan derivative such as N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), have been prepared using electrospinning of an aqueous solution of poly(vinyl alcohol) (PVA)-HTCC blends. HTCC, a water-soluble derivative of chitosan, was synthesized via the reaction between glycidyl-trimethylammonium chloride and chitosan. Solutions of PVA-HTCC Blends were electrospun. The morphology, diameter and structure of the produced electrospun nanofibres were examined by scanning electron microscopy (SEM). The average fibre diameter was in the range of 200-600 nm. SEM images showed that the morphology and diameter of the nanofibres were mainly affected by weight ratio of the blend and applied voltage. The results revealed that increasing HTCC content in the blends decreases the average fibre diameter. These observations were discussed on the basis of shear viscosities and conductivities of the spinning solutions. Microbiological assessment showed that the PVA-HTCC mats have a good antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli.  相似文献   
446.
447.
Acetobacter acetii, a local isolate transformed (+)-3-carene. b-Cyclodextrin enhanced the stability of the products and also aided the generation of step-wise transformation giving rise to oxygented derivatives at positions 2,3,4 and 5. Both the control and b-cyclodextrin mediated transformations gave rise to 17 transformation products which included 8-hydroxy-m-cymene, carane-3,4-diol-2,5-dione, 3-carene-2-ol-5-one, 3,4-epoxy-carane, 3-carene-2,5-diol and carane-carboxylic acid. A plausible orientation of (+)-3-carene inside b-cyclodextrin cavity is also suggested.  相似文献   
448.

Traumatic brain injury (TBI) is known as an acute degenerative pathology of the central nervous system, and has been shown to increase brain aquaporin 4 (AQP4) expression. Various molecular mechanisms affect AQP4 expression, including neuronal high mobility group box 1, forkhead box O3a, vascular endothelial growth factor, hypoxia-inducible factor-1 α (HIF-1 α) sirtuin 2, NF-κB, Malat1, nerve growth factor and Angiotensin II receptor type 1. In addition, inhibition of AQP4 with FK-506, MK-801 (indirectly by targeting N-methyl-d-aspartate receptor), inactivation of adenosine A2A receptor, levetiracetam, adjudin, progesterone, estrogen, V1aR inhibitor, hypertonic saline, erythropoietin, poloxamer 188, brilliant blue G, HIF-1alpha inhibitor, normobaric oxygen therapy, astaxanthin, epigallocatechin-3-gallate, sesamin, thaliporphine, magnesium, prebiotic fiber, resveratrol and omega-3, as well as AQP4 gene silencing lead to reduced edema upon TBI. This review summarizes current knowledge and evidence on the relationship between AQP4 and TBI, and the potential mechanisms involved.

  相似文献   
449.
450.
Human endometrial stem cells (hEnSCs) that can be differentiated into various neural cell types have been regarded as a suitable cell population for neural tissue engineering and regenerative medicine. Considering different interactions between hormones, growth factors, and other factors in the neural system, several differentiation protocols have been proposed to direct hEnSCs towards specific neural cells. The 17β-estradiol plays important roles in the processes of development, maturation, and function of nervous system. In the present research, the impact of 17β-estradiol (estrogen, E2) on the neural differentiation of hEnSCs was examined for the first time, based on the expression levels of neural genes and proteins. In this regard, hEnSCs were differentiated into neuron-like cells after exposure to retinoic acid (RA), epidermal growth factor (EGF), and also fibroblast growth factor-2 (FGF2) in the absence or presence of 17β-estradiol. The majority of cells showed a multipolar morphology. In all groups, the expression levels of nestin, Tuj-1 and NF-H (neurofilament heavy polypeptide) (as neural-specific markers) increased during 14 days. According to the outcomes of immunofluorescence (IF) and real-time PCR analyses, the neuron-specific markers were more expressed in the estrogen-treated groups, in comparison with the estrogen-free ones. These findings suggest that 17β-estradiol along with other growth factors can stimulate and upregulate the expression of neural markers during the neuronal differentiation of hEnSCs. Moreover, our findings confirm that hEnSCs can be an appropriate cell source for cell therapy of neurodegenerative diseases and neural tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号