首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   23篇
  2023年   4篇
  2022年   8篇
  2021年   21篇
  2020年   13篇
  2019年   24篇
  2018年   11篇
  2017年   11篇
  2016年   18篇
  2015年   15篇
  2014年   26篇
  2013年   29篇
  2012年   35篇
  2011年   31篇
  2010年   13篇
  2009年   10篇
  2008年   21篇
  2007年   19篇
  2006年   11篇
  2005年   16篇
  2004年   10篇
  2003年   11篇
  2002年   14篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有400条查询结果,搜索用时 31 毫秒
171.
Costunolide (CE) is a sesquiterpene lactone well-known for its antihepatotoxic, antiulcer, and anticancer activities. The present study focused on the evaluation of the cytogenetic toxicity and cellular death-inducing potential of CE in CHO cells, an epithelial cell line derived from normal ovary cells of Chinese hamster. The cytotoxic effect denoting MTT assay has shown an IC50 value of 7.56 μM CE, where 50% proliferation inhibition occurs. The oxidative stress caused by CE was confirmed based on GSH depletion induced cell death, conspicuously absent in N-acetylcysteine (GSH precursor) pretreated cells. The evaluation of genotoxic effects of CE using cytokinesis block micronucleus assay and chromosomal aberration test has shown prominent induction of binucleated micronucleated cells and aberrant metaphases bearing chromatid and chromosomal breaks, indicating CE’s clastogenic and aneugenic potential. The apoptotic death in CE treated cells was confirmed by an increase in the number of cells in subG1 phase, exhibiting chromatin condensation and membranous phosphatidylserine translocation. The apoptosis induction follows mitochondrial mediation, evident from an increase in the BAX/Bcl-2 ratio, caspase-3/7 activity, and mitochondrial membrane permeability. CE also induces cytostasis in addition to apoptosis, substantiated by the reduced cytokinetic (replicative indices) and mitotic (mitotic indices and histone H3 Ser-10 phosphorylation) activities. Overall, the cellular GSH depletion and potential genotoxic effects by CE led the CHO cells to commit apoptosis and lowered cell division. The observed sensitivity of CHO cells doubts unintended adverse effects of CE on normal healthy cells, suggesting higher essentiality of further studies in order to establish its safety efficacy in therapeutic explorations.  相似文献   
172.
An echolocating bat actively controls the spatial acoustic information that drives its behavior by directing its head and ears and by modulating the spectro-temporal structure of its outgoing sonar emissions. The superior colliculus may function in the coordination of these orienting components of the bat's echolocation system. To test this hypothesis, chemical and electrical microstimulation experiments were carried out in the superior colliculus of the echolocating bat, Eptesicus fuscus, a species that uses frequency modulated sonar signals. Microstimulation elicited pinna and head movements, similar to those reported in other vertebrate species, and the direction of the evoked behaviors corresponded to the site of stimulation, yielding a map of orienting movements in the superior colliculus. Microstimulation of the bat superior colliculus also elicited sonar vocalizations, a motor behavior specific to the bat's acoustic orientation by echolocation. Electrical stimulation of the adjacent periaqueductal gray, shown to be involved in vocal production in other mammalian species, elicited vocal signals resembling acoustic communication calls of E. fuscus. The control of vocal signals in the bat is an integral part of its acoustic orienting system, and our findings suggest that the superior colliculus supports diverse and species-relevant sensorimotor behaviors, including those used for echolocation.  相似文献   
173.
Formation of galactose‐acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap‐freezing. Here, lipidomic analysis using mass spectrometry showed that galactose‐acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl‐galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl‐galactose components in response to the same stress. Additionally, the composition of the acyl‐galactose component of Arabidopsis acMGDG (galactose‐acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub‐lethal freezing treatment, acMGDG contained mainly non‐oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid‐containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose‐acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses.  相似文献   
174.

Background

Orlistat, a fatty acid synthase (FASN) inhibitor, has been demonstrated to inhibit tumor cell survival. However, the mechanism(s) of its tumor growth retarding action against malignancies of hematological origin remains unclear. It is also not understood if the antitumor action of orlistat implicates modulated susceptibility of tumor cell to anticancer drugs. Therefore, the present investigation focuses to study the antitumor and chemosensitizing action of orlistat in a murine host bearing a progressively growing T cell lymphoma.

Methods

Tumor-bearing mice were administered with vehicle alone or containing orlistat followed by administration of PBS with or without cisplatin. Tumor progression and survival of tumor-bearing host were monitored along with analysis of tumor cell survival and apoptosis. Tumor ascitic fluid was examined for pH, NO and cytokines. Expression of genes and proteins was investigated by RT-PCR and western blot respectively. ROS was analyzed by DCFDA staining and FASN activity by spectrophotometry.

Results

Orlistat administration to tumor-bearing mice resulted in tumor growth retardation, prolonged life span, declined tumor cell survival and chemosensitization to cisplatin. It was accompanied by increased osmotic fragility, modulated acidosis, expression of ROS, NO, cytokines, MCT-1 and VH+ ATPase, Bcl2, Caspase-3, P53, inhibited FASN activity and declined expression of MDR and MRP-1 proteins.

Conclusion

Orlistat manifests antitumor and chemosensitizing action implicating modulated regulation of cell survival, reconstituted-tumor microenvironment and altered MDR phenotype.

General significance

These observations indicate that orlistat could be utilized as an adjunct regimen for improving antitumor efficacy of cisplatin.  相似文献   
175.
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo‐ and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2′‐phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat/KM) of NADP+ at least an order of magnitude lower than NAD+. Substitution of Glu42 with Ala improved specificity toward NADP+ by 10‐fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide‐hydroxyl ion (NAD+‐OH?) adduct contraposing previously reported adducts. The OH? of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2′‐hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD+‐OH? adduct in proton relay instead of hydride transfer as noted for previous adducts. Proteins 2014; 82:216–229. © 2013 Wiley Periodicals, Inc.  相似文献   
176.
Lipoarabinomannan (LAM) is composed of a phosphatidylinositol anchor followed by a mannan followed by an arabinan that may be capped with various motifs including oligosaccharides of mannose. A related polymer, lipomannan (LM), is composed of only the phosphatidylinositol and mannan core. Both the structure and the biosynthesis of LAM have been studied extensively. However, fundamental questions about the branching structure of LM and the number of arabinan chains on the mannan backbone in LAM remain. LM and LAM molecules produced by three different glycosyltransferase mutants of Mycobacterium smegmatis were used here to investigate these questions. Using an MSMEG_4241 mutant that lacks the α-(1,6)-mannosyltransferase used late in LM elongation, we showed that the reducing end region of the mannan that is attached to inositol has 5–7 unbranched α-6-linked-mannosyl residues followed by two or three α-6-linked mannosyl residues branched with single α-mannopyranose residues at O-2. After these branched mannosyl residues, the α-6-linked mannan chain is terminated with an α-mannopyranose at O-2 rather than O-6 of the penultimate residue. Analysis of the number of arabinans attached to the mannan core of LM in two other mutants (ΔembC and ΔMSMEG_4247) demonstrated exactly one arabinosyl substitution of the mannan core suggestive of the arabinosylation of a linear LM precursor with ∼10–12 mannosyl residues followed by additional mannosylation of the core and arabinosylation of a single arabinosyl “primer.” Thus, these studies suggest that only a single arabinan chain attached near the middle of the mannan core is present in mature LAM and allow for an updated working model of the biosynthetic pathway of LAM and LM.  相似文献   
177.
Tissue ischemia and ischemia–reperfusion (I/R) remain sources of cell and tissue death. Inability to restore blood flow and limit reperfusion injury represents a challenge in surgical tissue repair and transplantation. Nitric oxide (NO) is a central regulator of blood flow, reperfusion signaling and angiogenesis. De novo NO synthesis requires oxygen and is limited in ischemic vascular territories. Nitrite (NO2?) has been discovered to convert to NO via heme-based reduction during hypoxia, providing a NO synthase independent and oxygen-independent NO source. Furthermore, blockade of the matrix protein thrombospondin-1 (TSP1) or its receptor CD47 has been shown to promote downstream NO signaling via soluble guanylate cyclase (sGC) and cGMP-dependant kinase. We hypothesized that nitrite would provide an ischemic NO source that could be potentiated by TSP1–CD47 blockade enhancing ischemic tissue survival, blood flow and angiogenesis. Both low dose nitrite and direct blockade of TSP1–CD47 interaction using antibodies or gene silencing increased acute blood flow and late tissue survival in ischemic full thickness flaps. Nitrite and TSP1 blockade both enhanced in vitro and in vivo angiogenic responses. The nitrite effect could be abolished by inhibition of sGC and cGMP signaling. Potential therapeutic synergy was tested in a more severe ischemic flap model. We found that combined therapy with nitrite and TSP1–CD47 blockade enhanced flap perfusion, survival and angiogenesis to a greater extent than either agent alone, providing approximately 100% flap survival. These data provide a new therapeutic paradigm for hypoxic NO signaling through enhanced cGMP mediated by TSP1–CD47 blockade and nitrite delivery.  相似文献   
178.
Single motor unit (SMU) analysis provides a means to examine the motor control of a muscle. SMUs in the genioglossus show considerable complexity, with several different firing patterns. Two of the primary stimuli that contribute to genioglossal activation are carbon dioxide (CO(2)) and negative pressure, which act through chemoreceptor and mechanoreceptor activation, respectively. We sought to determine how these stimuli affect the behavior of genioglossus SMUs. We quantified genioglossus SMU discharge activity during periods of quiet breathing, elevated CO(2) (facilitation), and continuous positive airway pressure (CPAP) administration (inhibition). CPAP was applied in 2-cmH(2)O increments until 10 cmH(2)O during hypercapnia. Five hundred ninety-one periods (each ~ 3 breaths) of genioglossus SMU data were recorded using wire electrodes(n = 96 units) from 15 awake, supine subjects. Overall hypercapnic stimulation increased the discharge rate of genioglossus units (20.9 ± 1.0 vs. 22.7 ± 0.9 Hz). Inspiratory units were activated ~ 13% earlier in the inspiratory cycle, and the units fired for a longer duration (80.6 ± 5.1 vs. 105.3 ± 4.2% inspiratory time; P < 0.05). Compared with baseline, an additional 32% of distinguishable SMUs within the selective electrode recording area were recruited with hypercapnia. CPAP led to progressive SMU inhibition; at ~ 6 cmH(2)O, there were similar numbers of SMUs active compared with baseline, with peak frequencies of inspiratory units close to baseline, despite elevated CO(2) levels. At 10 cmH(2)O, the number of units was 36% less than baseline. Genioglossus inspiratory phasic SMUs respond to hypercapnic stimulation with changes in recruitment and rate coding. The SMUs respond to CPAP with derecruitment as a homogeneous population, and inspiratory phasic units show slower discharge rates. Understanding upper airway muscle recruitment/derecruitment may yield therapeutic targets for maintenance of pharyngeal patency.  相似文献   
179.
The hydrolysis kinetics of trisaccharides consisting of glucose, galactose, and fructose residues with different glycosidic bonds, 1-kestose, d-melezitose, d-raffinose, and lactosucrose, in subcritical water were conducted over the temperature range of 150-230 degrees C and at a constant pressure of 10 MPa. The hydrolysis of trisaccharides in subcritical water proceeded consecutively, i.e., one cleavage of the two bonds antedated the other. The preceding cleavage was not expressed by the first-order kinetics, but by the kinetics considering the concentration of the acidic compounds, which were produced by the degradation of the constituent monosaccharides. The hydrolysis of the constituent disaccharides, except sucrose composed of the alpha-Glc-(1-->2)-beta-Fru bond, obeyed first-order kinetics. All of the rate constants of the hydrolytic kinetics were determined, and the values were found to depend on the type of bond.  相似文献   
180.
Nitrite represents a bioactive reservoir of nitric oxide (NO) that may modulate vasodilation, respiration and cytoprotection after ischemia-reperfusion injury. Although nitrite formation is thought to occur via reaction of NO with oxygen, this third-order reaction cannot compete kinetically with the reaction of NO with hemoglobin to form nitrate. Indeed, the formation of nitrite from NO in the blood is limited when plasma is substituted with physiological buffers, which suggests that plasma contains metal-based enzymatic pathways for nitrite synthesis. We therefore hypothesized that the multicopper oxidase, ceruloplasmin, could oxidize NO to NO+, with subsequent hydration to nitrite. Accordingly, plasma NO oxidase activity was decreased after ceruloplasmin immunodepletion, in ceruloplasmin knockout mice and in people with congenital aceruloplasminemia. Compared to controls, plasma nitrite concentrations were substantially reduced in ceruloplasmin knockout mice, which were more susceptible to liver infarction after ischemia and reperfusion. The extent of hepatocellular infarction normalized after nitrite repletion. These data suggest new functions for the multicopper oxidases in endocrine NO homeostasis and nitrite synthesis, and they support the hypothesis that physiological concentrations of nitrite contribute to hypoxic signaling and cytoprotection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号