首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   18篇
  372篇
  2023年   5篇
  2022年   8篇
  2021年   21篇
  2020年   11篇
  2019年   22篇
  2018年   11篇
  2017年   9篇
  2016年   16篇
  2015年   15篇
  2014年   24篇
  2013年   26篇
  2012年   35篇
  2011年   29篇
  2010年   13篇
  2009年   10篇
  2008年   21篇
  2007年   19篇
  2006年   10篇
  2005年   16篇
  2004年   8篇
  2003年   10篇
  2002年   14篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有372条查询结果,搜索用时 15 毫秒
51.
A combination of bioassay and biochemical approaches were used to determine toxicity of Artemisia annua essential oil (AaEO) Pseudococcus viburni. AaEO via leaf dipping bioassay showed LC50 values of 0.693 and 0.419% after two time exposures. Different concentrations of AaEO caused deterrence index between 28.58 to 86.26% by the calculated ED50 of 0.4%. Although, α-esterase activity using α-naphtyl acetate increased in the treated nymphs by AaEO after 24 hours but it showed the lower activity in the treated nymphs using β-naphtyl acetate. Glutathione S-transferase assayed by CDNB showed the higher activity in the treated nymphs than control after 24 hours while the adverse results gained not only after 48 hours but also after 24 hours by using DCNB. No significant differences were found in the activity of alanine aminotransferase versus control, but aspartate aminotransferase and γ-glutamyl transferase showed the statistically higher activities in the treated nymphs in comparison with control. Activities of aldolase and lactate dehydrogenase were significantly lower than those of control. Only acid phosphatase showed the significantly altered activity in the treated nymphs in comparison with control after 24 hours. Results of our study indicated significant toxicity, deterrence and physiological effects of AaEO on P. viburni.  相似文献   
52.

Aims

Currently, there is no effective resuscitative adjunct to fluid and blood products to limit tissue injury for traumatic hemorrhagic shock. The objective of this study was to investigate the role of inhaled carbon monoxide (CO) to limit inflammation and tissue injury, and specifically mitochondrial damage, in experimental models of hemorrhage and resuscitation.

Results

Inhaled CO (250 ppm for 30 minutes) protected against mortality in severe murine hemorrhagic shock and resuscitation (HS/R) (20% vs. 80%; P<0.01). Additionally, CO limited the development of shock as determined by arterial blood pH (7.25±0.06 vs. 7.05±0.05; P<0.05), lactate levels (7.2±5.1 vs 13.3±6.0; P<0.05), and base deficit (13±3.0 vs 24±3.1; P<0.05). A dose response of CO (25–500 ppm) demonstrated protection against HS/R lung and liver injury as determined by MPO activity and serum ALT, respectively. CO limited HS/R-induced increases in serum tumor necrosis factor-α and interleukin-6 levels as determined by ELISA (P<0.05 for doses of 100–500ppm). Furthermore, inhaled CO limited HS/R induced oxidative stress as determined by hepatic oxidized glutathione:reduced glutathione levels and lipid peroxidation. In porcine HS/R, CO did not influence hemodynamics. However, CO limited HS/R-induced skeletal muscle and platelet mitochondrial injury as determined by respiratory control ratio (muscle) and ATP-linked respiration and mitochondrial reserve capacity (platelets).

Conclusion

These preclinical studies suggest that inhaled CO can be a protective therapy in HS/R; however, further clinical studies are warranted.  相似文献   
53.
Novel polysubstituted pyrroles have been designed and accessed via a one-pot multicomponent reaction followed by Pd-mediated C-C bond forming reactions. All the compounds synthesized were tested for their PDE4B inhibitory properties in vitro and two of them obtained via Heck reaction showed significant inhibition. The docking results suggested that these alkenyl derivatives containing ester moiety interact well with the PDE4B protein in silico where the ester carbonyl oxygen played a key role. The pyrrole framework presented here could be a new template for the identification of small molecule based novel inhibitors of PDE4. The single crystal X-ray data of a representative compound is presented.  相似文献   
54.

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20–21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p?<?0.05) improved, thus, yielding a significantly (p?<?0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p?<?0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.

  相似文献   
55.
A series of azatricyclodiones and octahydro-benzo[f]isoindoles have been synthesized by (4+2) Diels-Alder cycloaddition of maleimides with furfuryl amine. Reaction of azatricyclodiones with isocyanates led to the respective ureides. All of the compounds were screened against a number of bacteria and fungi. One of the compounds (2) displayed moderate antitubercular activity while two compounds (2) and (4) inhibited the fungal growth at 25 μg/mL.  相似文献   
56.
57.
58.
In most bacteria, the tubulin‐like GTPase FtsZ forms an annulus at midcell (the Z‐ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z‐ring assembly and early FtsZ‐directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C‐terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane‐anchored FtsZ in the regulation of cell wall hydrolysis.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号