首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   62篇
  1035篇
  2023年   7篇
  2022年   18篇
  2021年   22篇
  2020年   22篇
  2019年   26篇
  2018年   41篇
  2017年   29篇
  2016年   28篇
  2015年   51篇
  2014年   49篇
  2013年   68篇
  2012年   70篇
  2011年   86篇
  2010年   53篇
  2009年   29篇
  2008年   37篇
  2007年   38篇
  2006年   38篇
  2005年   41篇
  2004年   28篇
  2003年   33篇
  2002年   23篇
  2001年   15篇
  2000年   11篇
  1999年   13篇
  1998年   4篇
  1997年   8篇
  1996年   5篇
  1995年   9篇
  1993年   5篇
  1992年   4篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1988年   10篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   7篇
  1979年   7篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1960年   3篇
  1914年   2篇
排序方式: 共有1035条查询结果,搜索用时 31 毫秒
991.
992.
993.
Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC. DC were generated from CD14+ blood cells or obtained from cadaveric human skin. The MAbs prevented viral entry into purified DC and the ensuing productive infection in DC/T-cell cultures. When DC were first pulsed with HIV-1, MAbs blocked the subsequent transmission to unstimulated CD3+ T cells. Thus, neutralizing antibodies can block HIV-1 infection of DC and the cell-to-cell transmission of virus from infected DC to T cells. These data suggest that neutralizing antibodies could interrupt the initial events associated with mucosal transmission and regional spread of HIV-1.  相似文献   
994.
Proteolysis of photosystem I particles had no effect on P700 oxidation but did inhibit the rate of P700+ reduction. The Vmax values were decreased for both dichlorophenol and plastocyanin, but the Km values were unaffected indicating that trypsin treatment altered electron transfer rather than the binding of the donor to the photosystem I complex. The salt dependence of P700+ reduction was unaffected. The effects of P700+ reduction were the same for the preparations of different workers (Shiozawa, Alberte, Thornber 1974 Arch Biochem Biophys 165: 388; and Bengis, Nelson 1975 J Biol Chem 250: 2783).

In both cases, the 70-kilodalton, chlorophyll-containing polypeptide was digested confirming its role in transferring electrons from plastocyanin to P700. The fact that the preparation of Shiozawa et al. lacks subunit (III) but still used plastocyanin as the electron donor rules out a role for this subunit as “the plastocyanin binding protein.” Subunit III was also digested in the Bengis and Nelson preparation.

  相似文献   
995.
The effect of insulin was investigated on ovarian follicle population, ovulation rate, hormonal profiles and embryo/fetal development during pregnancy using transrectal ultrasonography in goats. Twelve goats synchronized in estrus were selected for the experiment. They were divided into two groups, viz. (untreated control, n=6) and (insulin treated, n=6). In treated group long acting bovine insulin was administered @ 0.2IU/kg body weight subcutaneously for three consecutive days, i.e. days 7-9 of estrous cycle. Thereafter, weekly single injection of insulin was continued for rest of the experiment. However, in control group only normal saline was injected as placebo. Breeding was allowed by natural service in both the groups. The does were subjected to B-mode transrectal ultrasound scanning of ovary and uterus weekly up to 120 and 98 days of gestation, respectively. Blood samples were collected weekly up to 135 days of gestation for the estimation of estradiol 17beta and progesterone (P4). The result revealed no difference in mean number of total follicles between the control and insulin treated groups. The diameter of medium follicle did not differ where as diameter of large follicle was comparatively higher in treated than control goats. The average number of corpus luteum (CL) was higher in insulin treated group as compared to control (1.66 vs. 1.16). However, the number as well as mean diameter of CL did not differ significantly between treated and control group. Serum concentrations of estradiol 17beta and progesterone were significantly (P<0.01) higher in treated than control goats. Embryonic vesicle was detected by day 21 in both the groups, however, its diameter did not differ significantly (0.73 and 0.72cm) between the groups. The twinning percentage was higher (50 vs. 16%) in insulin treated than the control goats. Placentome diameter was also higher (P>0.05) in treated animals. The results demonstrated beneficial effect of exogenous administration of insulin on ovarian function and twinning percentage in goats.  相似文献   
996.
997.
Members of the Pathogenesis Related (PR) 10 protein family have been identified in a variety of plant species and a wide range of functions ranging from defense to growth and development has been attributed to them. PR10 protein possesses ribonuclease (RNase) activity, interacts with phytohormones, involved in hormone-mediated signalling, afforded protection against various phytopathogenic fungi, bacteria, and viruses particularly in response to biotic and abiotic stresses. The resistance mechanism of PR10 protein may include activation of defense signalling pathways through possible interacting proteins involved in mediating responses to pathogens, degradation of RNA of the invading pathogens. Moreover, several morphological changes have been shown to accompany the enhanced abiotic stress tolerance. In this review, the possible mechanism of action of PR10 protein against biotic and abiotic stress has been discussed. Furthermore, our findings also confirmed that the in vivo Nitric oxide (NO) is essential for most of environmental abiotic stresses and disease resistance against pathogen infection. The proper level of NO may be necessary and beneficial, not only in plant response to the environmental abiotic stress, but also to biotic stress. The updated information on this interesting group of proteins will be useful in future research to develop multiple stress tolerance in plants.  相似文献   
998.
Tetralene and indene compounds have shown inhibitory activity against human pathogen, Mycobacterium tuberculosis. Their potential use as antistaphylococcal agent against drug-resistant Staphylococcus aureus has not been explored so far. We determined in vitro antistaphylococcal activity and mechanism of action of these compounds as sortase A inhibitors through in silico analysis followed by biological assays. Tetralene and indene series were tested against S. aureus strains MTCC96, MRSA, and VA30. Three compounds showed significant reduction in MIC in both wild-type and drug-resistant S. aureus strains. In silico absorption, distribution, metabolism, excretion, and toxicity analysis of identified leads and cytotoxicity testing with colorimetric method using Vero and WRL-68 cell lines showed no significant cytotoxic effects. Molecular docking of these molecules with sortase A (PDB: 2KID) showed H-bond interaction with functional site residue Arg197 of sortase A. Sortase A inhibition assay was developed by expressing SrtA?N from S. aureus strain MTCC96. Tetralene and indene compounds were found to have sortase A inhibitory potential. S. aureus strain MTCC96 treated with these compounds showed surface-sorting inhibition of fibronectin-binding protein and reduction in adherence to host extracellular matrix protein, fibronectin. 1-Chloro, 2-formyl, 6-methoxy, 1-tetralene (Tet-5), 1,5-dichloro, 2-formyl, 1-indene (Tet-20) and 1-chloro, 2-formyl, 5,6-methylenedioxy, and 1-indene (Tet-21) exhibited antistaphylococcal activity along with sortase A inhibition. The results also indicate the possible role of these leads in other reactions essential for cell viability.  相似文献   
999.

Background

Increase in the number of multidrug resistant pathogens and the accompanied rise in case fatality rates has hampered the treatment of many infectious diseases including cholera. Unraveling the mechanisms responsible for multidrug resistance in the clinical isolates of Vibrio cholerae would help in understanding evolution of these pathogenic bacteria and their epidemic potential. This study was carried out to identify genetic factors responsible for multiple drug resistance in clinical isolates of Vibrio cholerae O1, serotype Ogawa, biotype El Tor isolated from the patients admitted to the Infectious Diseases Hospital, Kolkata, India, in 2009.

Methodology/Principal Findings

One hundred and nineteen clinical isolates of V. cholerae were analysed for their antibiotic resistance phenotypes. Antibiogram analysis revealed that majority of the isolates showed resistance to co-trimoxazole, nalidixic acid, polymixin B and streptomycin. In PCR, SXT integrase was detected in 117 isolates and its sequence showed 99% identity notably to ICEVchInd5 from Sevagram, India, ICEVchBan5 from Bangladesh and VC1786ICE sequence from Haiti outbreak among others. Antibiotic resistance traits corresponding to SXT element were transferred from the parent Vibrio isolate to the recipient E. coli XL-1 Blue cells during conjugation. Double-mismatch-amplification mutation assay (DMAMA) revealed the presence of Haitian type ctxB allele of genotype 7 in 55 isolates and the classical ctxB allele of genotype 1 in 59 isolates. Analysis of topoisomerase sequences revealed the presence of mutation Ser83 → Ile in gyrA and Ser85→ Leu in parC. This clearly showed the circulation of SXT-containing V. cholerae as causative agent for cholera in Kolkata.

Conclusions

There was predominance of SXT element in these clinical isolates from Kolkata region which also accounted for their antibiotic resistance phenotype typical of this element. DMAMA PCR showed them to be a mixture of isolates with different ctxB alleles like classical, El Tor and Haitian variants.  相似文献   
1000.
Glutaredoxins (Grxs) are short, cysteine-rich glutathione (GSH)-mediated oxidoreductases. In this study, a chickpea (Cicer arietinum L.) glutaredoxin [LOC101493651 (CaGrx)] gene has been selected based on screening experiments with two contrasting varieties of chickpea, PUSA-362 (drought-tolerant) and ICC-1882 (drought-sensitive) under drought and salinity. The tolerant variety showed higher CaGrx gene expression, as compared to less in the sensitive variety, under both the stresses. The CaGrx gene was then over-expressed in Arabidopsis thaliana and were exposed to drought and salinity. The over-expression of CaGrx elevated the activity of glutaredoxin, which induced antioxidant enzymes (glutathione reductase; GR, glutathione peroxidase; GPX, catalase; CAT, ascorbate peroxidase; APX, glutathione-S-transferase; GST, superoxide dismutase; SOD, monodehydroascorbate reductase; MDHAR, and dehydroascorbate reductase; DHAR), antioxidants (GSH and ascorbate) and stress-responsive amino acids (cysteine and proline). Enhancement in the antioxidant defense system possibly administered tolerance in transgenics against both stresses. CaGrx reduced stress markers (H2O2, TBARS, and electrolyte leakage) and enhanced root growth, seed germination, and survival against both stresses. The physiological parameters (net photosynthesis; PN, water use efficiency; WUE, stomatal conductance; gs, transpiration; E, electron transport rate; ETR, and photochemical quenching; qP), chlorophylls and carotenoids, were improved in the transgenics during both stresses, that maintained the photosynthetic apparatus and protected the plants from damage. The enhanced activity of the cysteine biosynthesis enzyme, o-acetylserine (thiol) lyase (OAS-TL), increased the cysteine level in the transgenics, which elevated glutathione biosynthesis to maintain the ascorbate–glutathione cycle under both stresses. This investigation verified that the CaGrx gene provides tolerance against salinity and drought, maintaining physiological and morphological performances, and could be exploited for genetic engineering approaches to overcome both the stresses in various crops.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00999-z.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号