首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2888篇
  免费   323篇
  国内免费   22篇
  2023年   13篇
  2022年   21篇
  2021年   37篇
  2020年   32篇
  2019年   52篇
  2018年   68篇
  2017年   46篇
  2016年   70篇
  2015年   151篇
  2014年   144篇
  2013年   179篇
  2012年   220篇
  2011年   202篇
  2010年   120篇
  2009年   111篇
  2008年   122篇
  2007年   115篇
  2006年   134篇
  2005年   133篇
  2004年   123篇
  2003年   111篇
  2002年   87篇
  2001年   91篇
  2000年   93篇
  1999年   61篇
  1998年   31篇
  1997年   29篇
  1996年   31篇
  1994年   22篇
  1992年   43篇
  1991年   46篇
  1990年   36篇
  1989年   36篇
  1988年   31篇
  1987年   36篇
  1986年   28篇
  1985年   18篇
  1984年   30篇
  1983年   31篇
  1982年   25篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   23篇
  1977年   16篇
  1976年   19篇
  1975年   13篇
  1974年   12篇
  1973年   15篇
  1972年   11篇
排序方式: 共有3233条查询结果,搜索用时 398 毫秒
191.
192.
Interleukin-6 (IL-6) is a proinflammatory cytokine associated with the disease status of gastric carcinoma (GC). Vascular endothelial growth factor (VEGF) is a potent tumor angiogenic factor in GC. In this study, we attempted to clarify whether IL-6 can regulate VEGF and angiogenesis in GC. GC samples from 54 surgical specimens were subjected to immunohistochemical examination of IL-6, VEGF, and tumor microvessels, and results showed that IL-6 was positively correlated with VEGF expression and tumor vasculature. We determined VEGF expression in four GC cell lines by ELISA, revealing that GC cells can produce significant amount of VEGF with increasing dose and duration of IL-6 stimulation. Next, a luciferase reporter gene assay was employed to determine the signaling pathway driving the VEGF promoter by IL-6, which showed that the JAK/STAT pathway is involved in the stimulation of VEGF gene expression. The effects of IL-6 on angiogenesis in vitro and in vivo were evaluated by HUVEC studies and the Matrigel plug assay, respectively. Results showed that IL-6 effectively promoted HUVEC proliferation and tube formation in vitro and Matrigel plug vascularization in vivo, primarily by inducing VEGF in GC. This study provides evidence that the multifunctional cytokine, IL-6, may induce VEGF expression which increases angiogenesis in gastric carcinogenesis.  相似文献   
193.
194.
CD1d function is regulated by microsomal triglyceride transfer protein   总被引:7,自引:0,他引:7  
CD1d is a major histocompatibility complex (MHC) class I-related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-alpha chain (invariant NKT cells). The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell-mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.  相似文献   
195.
Airway smooth muscle is able to adapt and maintain a nearly constant maximal force generation over a large length range. This implies that a fixed filament lattice such as that found in striated muscle may not exist in this tissue and that plastic remodeling of its contractile and cytoskeletal filaments may be involved in the process of length adaptation that optimizes contractile filament overlap. Here, we show that isometric force produced by airway smooth muscle is independent of muscle length over a twofold length change; cell cross-sectional area was inversely proportional to cell length, implying that the cell volume was conserved at different lengths; shortening velocity and myosin filament density varied similarly to length change: increased by 69.4% ± 5.7 (SE) and 76.0% ± 9.8, respectively, for a 100% increase in cell length. Muscle power output, ATPase rate, and myosin filament density also have the same dependence on muscle cell length: increased by 35.4% ± 6.7, 34.6% ± 3.4, and 35.6% ± 10.6, respectively, for a 50% increase in cell length. The data can be explained by a model in which additional contractile units containing myosin filaments are formed and placed in series with existing contractile units when the muscle is adapted at a longer length. muscle contraction; myosin filaments; ATPase activity; electron microscopy  相似文献   
196.
Tuberculosis and malaria together result in an estimated 5 million deaths annually. The spread of multidrug resistance in the most pathogenic causative agents, Mycobacterium tuberculosis and Plasmodium falciparum, underscores the need to identify active compounds with novel inhibitory properties. Although genetically unrelated, both organisms use a type II fatty-acid synthase system. Enoyl acyl carrier protein reductase (ENR), a key type II enzyme, has been repeatedly validated as an effective antimicrobial target. Using high throughput inhibitor screens with a combinatorial library, we have identified two novel classes of compounds with activity against the M. tuberculosis and P. falciparum enzyme (referred to as InhA and PfENR, respectively). The crystal structure of InhA complexed with NAD+ and one of the inhibitors was determined to elucidate the mode of binding. Structural analysis of InhA with the broad spectrum antimicrobial triclosan revealed a unique stoichiometry where the enzyme contained either a single triclosan molecule, in a configuration typical of other bacterial ENR:triclosan structures, or harbored two triclosan molecules bound to the active site. Significantly, these compounds do not require activation and are effective against wild-type and drug-resistant strains of M. tuberculosis and P. falciparum. Moreover, they provide broader chemical diversity and elucidate key elements of inhibitor binding to InhA for subsequent chemical optimization.  相似文献   
197.
This study develops the basis for video-computer quantitative evaluation method for measuring degree of thumb impairment. The system evaluates the three-dimensional space (workspace) within which the thumb-tip moves and computes its surface area. This study is intended to be the basis of a subsequent study which will compute the percentage of actual use compared to the "ideal" value for the given thumb length. Based on this quantitative measurement, the movement function of the impaired thumb can be identified objectively. Repeatability testing confirms that the video motion analysis system is a reliable tool for measuring the workspace of thumb-tip motion. It is also shown experimentally that there is a linear correlation between the surface area of thumb-tip motion workspace and the square of the thumb length. Accordingly, this method may be used to evaluate the functional abnormalities and deformities of the thumb.  相似文献   
198.
Liu JS  Kuo SR  Melendy T 《Mutation research》2003,532(1-2):215-226
To better understand the different cellular responses to replication fork pausing versus blockage, early DNA damage response markers were compared after treatment of cultured mammalian cells with agents that either inhibit DNA polymerase activity (hydroxyurea (HU) or aphidicolin) or selectively induce S-phase DNA damage responses (the DNA alkylating agents, methyl methanesulfonate (MMS) and adozelesin). These agents were compared for their relative abilities to induce phosphorylation of Chk1, H2AX, and replication protein A (RPA), and intra-nuclear focalization of gamma-H2AX and RPA. Treatment by aphidicolin and HU resulted in phosphorylation of Chk1, while HU, but not aphidicolin, induced focalization of gamma-H2AX and RPA. Surprisingly, pre-treatment with aphidicolin to stop replication fork progression, did not abrogate HU-induced gamma-H2AX and RPA focalization. This suggests that HU may act on the replication fork machinery directly, such that fork progression is not required to trigger these responses. The DNA-damaging fork-blocking agents, adozelesin and MMS, both induced phosphorylation and focalization of H2AX and RPA. Unlike adozelesin and HU, the pattern of MMS-induced RPA focalization did not match the BUdR incorporation pattern and was not blocked by aphidicolin, suggesting that MMS-induced damage is not replication fork-dependent. In support of this, MMS was the only reagent used that did not induce phosphorylation of Chk1. These results indicate that induction of DNA damage checkpoint responses due to adozelesin is both replication fork and fork progression dependent, induction by HU is replication fork dependent but progression independent, while induction by MMS is independent of both replication forks and fork progression.  相似文献   
199.
Wu W  Coss D  Lorenson MY  Kuo CB  Xu X  Walker AM 《Biochemistry》2003,42(24):7561-7570
Previous work has shown that naturally phosphorylated prolactin antagonizes the growth-promoting activities of unmodified prolactin (U-PRL) and that this effect is duplicated by a molecular mimic, S179D PRL. At the same time, the S179D PRL is a superagonist with regard to expression of some PRL-regulated genes. We have asked whether the different activities of U-PRL and S179D PRL are the result of differential signaling. HC11 cells (a normal mouse mammary cell line) were grown to confluence, primed with hydrocortisone, and then exposed to the PRLs. A 15 min incubation of PRL-naive cells led to substantial tyrosine phosphorylation of Jak 2 and Stat 5a by U-PRL and an essentially equivalent Jak 2 activation by S179D PRL. The latter, however, was accompanied by reduced tyrosine phosphorylation of Stat 5a. EMSA analysis using a Stat 5 binding site showed both PRLs to cause equivalent binding of nuclear proteins and that most of what bound was complexed through Stat 5a. Phosphoamino acid analysis of Stat 5 showed S179D PRL to double the amount of serine phosphorylation versus that seen with U-PRL. Analysis of the MAP kinase pathway showed U-PRL capable of activation of ERKs 1 and 2 but that signaling via ERKs 1 and 2 was greater with S179D PRL. A 7-day incubation in either PRL increased beta-casein mRNA levels, but S179D PRL caused a 2-fold increase over that seen with U-PRL. The increase, over that seen with U-PRL, was blocked by the MAP kinase inhibitor, PD98059. After 7 days of treatment with S179D PRL, expression of the short PRL receptor was doubled, and signaling showed a greater dependence on the MAP kinase pathway (2.9-fold increase in ERK 1 and 2 activation). We conclude that although both PRLs use both pathways to some extent, U-PRL signals primarily through Jak 2-Stat 5 whereas S179D PRL signals primarily through the MAP kinase pathway especially after prolonged exposure. This is the first demonstration of differential involvement of signaling pathways by different forms of PRL.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号