首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   23篇
  国内免费   3篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   11篇
  2014年   14篇
  2013年   9篇
  2012年   16篇
  2011年   20篇
  2010年   16篇
  2009年   17篇
  2008年   13篇
  2007年   13篇
  2006年   6篇
  2005年   5篇
  2004年   11篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   7篇
  1973年   2篇
  1972年   1篇
  1961年   1篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
141.
142.
Plants have substantially higher gene duplication rates compared with most other eukaryotes. These plant gene duplicates are mostly derived from whole genome and/or tandem duplications. Earlier studies have shown that a large number of duplicate genes are retained over a long evolutionary time, and there is a clear functional bias in retention. However, the influence of duplication mechanism, particularly tandem duplication, on duplicate retention has not been thoroughly investigated. We have defined orthologous groups (OGs) between Arabidopsis (Arabidopsis thaliana) and three other land plants to examine the functional bias of retained duplicate genes during vascular plant evolution. Based on analysis of Gene Ontology categories, it is clear that genes in OGs that expanded via tandem duplication tend to be involved in responses to environmental stimuli, while those that expanded via nontandem mechanisms tend to have intracellular regulatory roles. Using Arabidopsis stress expression data, we further demonstrated that tandem duplicates in expanded OGs are significantly enriched in genes that are up-regulated by biotic stress conditions. In addition, tandem duplication of genes in an OG tends to be highly asymmetric. That is, expansion of OGs with tandem genes in one organismal lineage tends to be coupled with losses in the other. This is consistent with the notion that these tandem genes have experienced lineage-specific selection. In contrast, OGs with genes duplicated via nontandem mechanisms tend to experience convergent expansion, in which similar numbers of genes are gained in parallel. Our study demonstrates that the expansion of gene families and the retention of duplicates in plants exhibit substantial functional biases that are strongly influenced by the mechanism of duplication. In particular, genes involved in stress responses have an elevated probability of retention in a single-lineage fashion following tandem duplication, suggesting that these tandem duplicates are likely important for adaptive evolution to rapidly changing environments.  相似文献   
143.
A micromanipulation method is described for measuring the bursting forces of bacteria and relating them to cell size. At a compression speed of 6.2 m s–1, bursting forces of three samples of rapidly growing Staphylococcus epidermis from a batch culture varied from 3 to 34 N with an average value of 13.8 N (standard error 0.8 N). Escherichia coli grown in continuous culture at a specific growth rate of 0.5 h–1 had bursting forces varying from 1 to 9 N with an average value of 3.6 N (standard error 0.4 N). In squeeze-hold experiments, force relaxation was observed, which was attributed to water loss from the cells, or viscoelasticity, or both. At high compression speed, such as 6.2 m s–1, this relaxation could be neglected. Micromanipulation strength measurements might be used in studies of cell mechanical disruption and of the dependence of cell strength on cell physiology.  相似文献   
144.
It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   
145.
The pineal neurohormone melatonin modulates a variety of physiological processes through different receptors. It has recently been reported that the cloned melatonin receptors (MT1, MT2 and Mel1c) exhibit differential abilities to stimulate phospholipase C (PLC) via G(16). Here we examined the molecular basis of such differences in melatonin receptor signaling. Coexpression of MT1 or MT2 with the alpha subunit of G(16) (Galpha(16) ) allowed COS-7 cells to accumulate inositol phosphates in response to 2-iodomelatonin. In contrast, Mel1c did not activate Galpha(16) even though its expression was demonstrated by radioligand binding and agonist-induced inhibition of adenylyl cyclase. As Mel1c possesses an exceptionally large C-terminal tail, we further asked if this structural feature prevented productive coupling to Galpha(16). Eleven chimeric melatonin or mutant receptors were constructed by swapping all or part of the C-terminal tail between MT1, MT2 and Mel1c. All chimeras were fully capable of binding 2-[(125) I]iodomelatonin and inhibiting adenylyl cyclase. Chimeras containing the full-length Mel1c tail were incapable of activating Galpha(16), while those that contained the complete C-terminal region of either MT1 or MT2 stimulated PLC. Incorporation of the extra portion of the C-terminal tail of Mel1c to either MT1 or MT2 completely abolished the chimeras' ability to stimulate PLC via Galpha(16). In contrast, truncation of the C-terminal tail of Mel1c allowed interaction with Galpha(16). Our results suggest that Galpha(16) can discern structural differences amid the three melatonin receptors and provide evidence for functional distinction of Mel1c from MT1 and MT2 receptors.  相似文献   
146.
Meiotic silencing by unpaired DNA: properties,regulation and suppression   总被引:13,自引:0,他引:13  
Shiu PK  Metzenberg RL 《Genetics》2002,161(4):1483-1495
  相似文献   
147.

Background

Loads acting on scoliotic spines are thought to be asymmetric and involved in progression of the scoliotic deformity; abnormal loading patterns lead to changes in bone and disc cell activity and hence to vertebral body and disc wedging. At present however there are no direct measurements of intradiscal stresses or pressures in scoliotic spines. The aim of this study was to obtain quantitative measurements of the intradiscal stress environment in scoliotic intervertebral discs and to determine if loads acting across the scoliotic spine are asymmetric. We performed in vivo measurements of stresses across the intervertebral disc in patients with scoliosis, both parallel (termed horizontal) and perpendicular (termed vertical) to the end plate, using a side mounted pressure transducer (stress profilometry)

Methods

Stress profilometry was used to measure horizontal and vertical stresses at 5 mm intervals across 25 intervertebral discs of 7 scoliotic patients during anterior reconstructive surgery. A state of hydrostatic pressure was defined by identical horizontal and vertical stresses for at least two consecutive readings. Results were compared with similar stress profiles measured during surgery across 10 discs of 4 spines with no lateral curvature and with data from the literature.

Results

Profiles across scoliotic discs were very different from those of normal, young, healthy discs of equivalent age previously presented in the literature. Hydrostatic pressure regions were only seen in 14/25 discs, extended only over a short distance. Non-scoliotic discs of equivalent age would be expected to show large centrally placed hydrostatic nuclear regions in all discs. Mean pressures were significantly greater (0.25 MPa) than those measured in other anaesthetised patients (<0.07 MPa). A stress peak was seen in the concave annulus in 13/25 discs. Stresses in the concave annulus were greater than in the convex annulus indicating asymmetric loading in these anaesthetised, recumbent patients.

Conclusion

Intradiscal pressures and stresses in scoliotic discs are abnormal, asymmetrical and high in magnitude even in the absence of significant applied muscle loading. The origin of these abnormal stresses is unclear.  相似文献   
148.
149.
DNA introduced into Neurospora crassa are usually inserted at random ectopic sites of the genome, often in multiple copies. To facilitate the study of gene expression and function, transformation by a single-copy of a gene at a defined locus is desired. Although several targeted gene placement methods are available for N. crassa, they all require a specific genetic background in the recipient. We describe here the development of a new locus for targeted gene placement that does not require any pre-existing marker in the target strain. Our system takes advantage of the fact that disruption of the csr-1 gene, which encodes the cyclosporin A-binding protein, leads to the resistance to cyclosporin A. By cloning a gene of interest into a csr-1 knock-in vector and transforming a fungus with it, one can easily insert any gene, in single-copy, into a defined locus.  相似文献   
150.
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号