首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7617篇
  免费   669篇
  国内免费   879篇
  2024年   31篇
  2023年   148篇
  2022年   318篇
  2021年   544篇
  2020年   393篇
  2019年   460篇
  2018年   407篇
  2017年   326篇
  2016年   381篇
  2015年   554篇
  2014年   653篇
  2013年   617篇
  2012年   778篇
  2011年   632篇
  2010年   417篇
  2009年   330篇
  2008年   326篇
  2007年   300篇
  2006年   233篇
  2005年   209篇
  2004年   145篇
  2003年   112篇
  2002年   134篇
  2001年   104篇
  2000年   72篇
  1999年   77篇
  1998年   66篇
  1997年   48篇
  1996年   43篇
  1995年   36篇
  1994年   47篇
  1993年   25篇
  1992年   22篇
  1991年   24篇
  1990年   25篇
  1989年   26篇
  1988年   17篇
  1987年   20篇
  1986年   17篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1953年   1篇
排序方式: 共有9165条查询结果,搜索用时 78 毫秒
201.
The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.  相似文献   
202.
Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been identified as an attractive target for atherosclerosis intervention. Given potential relevance of 5-cholesten-3β, 25-diol, 3-sulphate (CHOS) and PPARγ, an integrated docking method was used to study their interaction mechanisms, with the full considerations to distinct CHOS conformations and dynamic ensembles of PPARγ ligand-binding domain (PPARγ-LBD). The results revealed that this novel platform is satisfactory to the accurate determination of binding profiles, and the binding pattern of CHOS is rather similar as those of current PPARγ full/partial agonists. CHOS contributes to the stabilization of the AF2 and β-sheet surfaces of PPARγ-LBD and promotes the configuration adjustment of Ω loop, in order to inhibit the Cdk5-mediated PPARγ phosphorylation. Nonetheless, there are clear differences in term of occupation of full or partial agonist-like binding models. The energetic and geometric analyses further revealed that CHOS may be fond of partial agonist-like binding, and its sulfonic group and carbon skeleton are helpful for the binding process. We hope that the results will aid our understanding of recognitions involving CHOS with PPARγ-LBD and warrant the further aspects to pharmacological experiments.

Communicated by Ramaswamy H. Sarma  相似文献   
203.
As a member of the low-density lipoprotein receptor (LDLR) superfamily, vitellogenin (Vg) receptor (VgR) is responsible for the uptake of Vg into developing oocytes and is a potential target for pest control. Here, a full-length VgR complementary DNA (named as CsVgR) was isolated and characterized in the rice stem borer, Chilo suppressalis. The composite CsVgR gene contained an open reading frame of 5,484 bp encoding a protein of 1,827 amino acid residues. Structural analysis revealed that CsVgR contained two ligand-binding domains (LBDs) with four Class A (LDLRA) repeats in LBD1 and seven in LBD2, which was structurally different from most non-Lepidopteran insect VgRs having five repeats in LBD1 and eight in LBD2. The developmental expression analysis showed that CsVgR messenger RNA expression was first detectable in 3-day-old pupae, sharply increased in newly emerged female adults, and reached a peak in 2-day-old female adults. Consistent with most other insects VgRs, CsVgR was exclusively expressed in the ovary. Notably, injection of dsCsVgR into late pupae resulted in fewer follicles in the ovarioles as well as reduced fecundity, suggesting a critical role of CsVgR in female reproduction. These results may contribute to the development of RNA interference-mediated disruption of reproduction as a control strategy of C. suppressalis.  相似文献   
204.
Li  Yan-mei  Wang  Meng  Wang  Tian-yun  Wei  Yong-ge  Guo  Xiao  Mi  Chun-liu  Zhao  Chun-peng  Cao  Xiang-xiang  Dou  Yuan-yuan 《Molecular biology reports》2020,47(1):469-475
Molecular Biology Reports - Multicistronic vectors can increase transgene expression and decrease the imbalance of gene expression in the Chinese hamster ovary (CHO) cell expression system. Small,...  相似文献   
205.
Ming  Nan  Ma  Nana  Jiao  Baozhen  Lv  Wei  Meng  Qingwei 《Plant Molecular Biology Reporter》2020,38(1):75-94

In plants, C2H2-type zinc finger proteins play important roles in multiple processes, including plant growth and development, as well as biotic and abiotic responses. In the present study, based on the presence of the C2H2 domain (CX2~4CX3FX5LX2HX3~5H), 112 C2H2-type zinc finger proteins were predicted in tomato. Through gene and protein structures analyses and phylogenetic analysis, the 112 C2H2-type zinc finger proteins were divided into five subfamilies. Members of the same subfamily shared similarities in gene and protein structures, while members of different subfamilies contained different numbers of the C2H2 domain. The tissue expression pattern analysis showed that 24 C2H2-type zinc finger proteins are constitutively expressed in all tissues, indicating that they may play important roles in the growth and development of all tissues. In addition, under chilling (4 °C), heat (42 °C), high salinity (200 Mm NaCl), and osmotic (20% PEG) stresses, members of C2H2-type zinc finger family were induced to varying degrees, which suggested that these genes were involved in multiple abiotic stress responses. This study will provide theoretical basis for further research of C2H2-type zinc finger proteins in tomato.

  相似文献   
206.
Experiments that longitudinally collect RNA sequencing (RNA-seq) data can provide transformative insights in biology research by revealing the dynamic patterns of genes. Such experiments create a great demand for new analytic approaches to identify differentially expressed (DE) genes based on large-scale time-course count data. Existing methods, however, are suboptimal with respect to power and may lack theoretical justification. Furthermore, most existing tests are designed to distinguish among conditions based on overall differential patterns across time, though in practice, a variety of composite hypotheses are of more scientific interest. Finally, some current methods may fail to control the false discovery rate. In this paper, we propose a new model and testing procedure to address the above issues simultaneously. Specifically, conditional on a latent Gaussian mixture with evolving means, we model the data by negative binomial distributions. Motivated by Storey (2007) and Hwang and Liu (2010), we introduce a general testing framework based on the proposed model and show that the proposed test enjoys the optimality property of maximum average power. The test allows not only identification of traditional DE genes but also testing of a variety of composite hypotheses of biological interest. We establish the identifiability of the proposed model, implement the proposed method via efficient algorithms, and demonstrate its good performance via simulation studies. The procedure reveals interesting biological insights, when applied to data from an experiment that examines the effect of varying light environments on the fundamental physiology of the marine diatom Phaeodactylum tricornutum.  相似文献   
207.
Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR-AcSp1R, we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR-AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR-AcSp1R changed from α-helix to β-sheet. The conformation change of FlagR-AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 μm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.  相似文献   
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号