首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1210篇
  免费   51篇
  2021年   11篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   14篇
  2016年   22篇
  2015年   27篇
  2014年   20篇
  2013年   111篇
  2012年   62篇
  2011年   62篇
  2010年   37篇
  2009年   40篇
  2008年   66篇
  2007年   72篇
  2006年   75篇
  2005年   69篇
  2004年   81篇
  2003年   69篇
  2002年   53篇
  2001年   15篇
  2000年   13篇
  1999年   25篇
  1998年   23篇
  1997年   21篇
  1996年   22篇
  1995年   16篇
  1994年   14篇
  1993年   12篇
  1992年   6篇
  1991年   9篇
  1990年   11篇
  1989年   12篇
  1988年   6篇
  1987年   6篇
  1986年   13篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   14篇
  1981年   7篇
  1980年   13篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   4篇
  1968年   7篇
排序方式: 共有1261条查询结果,搜索用时 15 毫秒
131.
Based on the original spirodiketopiperazine design framework, further optimization of an orally available CCR5 antagonist was undertaken. Structural hybridization of the hydroxylated analog 4 derived from one of the oxidative metabolites and the new orally available non-hydroxylated benzoic acid analog 5 resulted in another potent orally available CCR5 antagonist 6a as a clinical candidate. Full details of a structure-activity relationship (SAR) study and ADME properties are presented.  相似文献   
132.
Clonal ginbuna crucian carp is, a naturally gynogenetic fish, and is a useful model animal for studying T-cell-mediated immunity. To gain molecular information on MHC class I molecules from this species, we have identified four types of MHC class I (caauUA-S3n, caauUF-S3n, caauZE-S3n, and caauZB-S3n) and five beta 2-microglobulin (β(2)m) (caauβ2m-1a, caauβ2m-1b, caauβ2m-2, caauβ2m-3a and caauβ2m-3b) by an expressed sequence tag (EST) analysis and using homology cloning with degenerated primers. Like UA class I genes in other cyprinid fish, the caauUA-S3n shows features of classical MHC class I, such as conservation of all key amino acids interacting with antigenic peptides, and ubiquitous tissue expression. A phylogenetic analysis shows that the β(2)m-1 and β(2)m-2 isoforms are clustered with those of other cyprinid fishes, while β(2)m-3 isoforms make a cluster that is separated from a common ancestor of salmonid and cyprinid fishes. This finding suggests that the β(2)m isoforms of ginbuna cruician carp comprise two lineages and may possess different functions. The MHC class I and β(2)m sequences from one clonal strain will facilitate our understanding of the interaction of MHC class I with β(2)m in teleosts.  相似文献   
133.
Adenosine A(2A) receptors (A2ARs) are thought to interact negatively with the dopamine D(2) receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-na?ve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([(11)C]TMSX) in nine drug-na?ve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-na?ve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-na?ve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-na?ve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-na?ve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   
134.
Adenosine A2A receptors (A2ARs) are thought to interact negatively with the dopamine D2 receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson''s disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   
135.

Background

It has recently been hypothesized that hyperglutamatergia in the brain is involved in the pathophysiology of autism. However, there is no conclusive evidence of the validity of this hypothesis. As peripheral glutamate/glutamine levels have been reported to be correlated with those of the central nervous system, the authors examined whether the levels of 25 amino acids, including glutamate and glutamine, in the platelet-poor plasma of drug-naïve, male children with high-functioning autism (HFA) would be altered compared with those of normal controls.

Methodology/Principal Findings

Plasma levels of 25 amino acids in male children (N = 23) with HFA and normally developed healthy male controls (N = 22) were determined using high-performance liquid chromatography. Multiple testing was allowed for in the analyses. Compared with the normal control group, the HFA group had higher levels of plasma glutamate and lower levels of plasma glutamine. No significant group difference was found in the remaining 23 amino acids. The effect size (Cohen''s d) for glutamate and glutamine was large: 1.13 and 1.36, respectively. Using discriminant analysis with logistic regression, the two values of plasma glutamate and glutamine were shown to well-differentiate the HFA group from the control group; the rate of correct classification was 91%.

Conclusions/Significance

The present study suggests that plasma glutamate and glutamine levels can serve as a diagnostic tool for the early detection of autism, especially normal IQ autism. These findings indicate that glutamatergic abnormalities in the brain may be associated with the pathobiology of autism.  相似文献   
136.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser(187) of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser(187) of SNAP-25 with Ala using "knock-in" technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects.  相似文献   
137.
Orangutans display remarkable developmental changes and sexual differences in facial morphology, such as the flanges or cheek-pads that develop only on the face of dominant adult males. These changes suggest that facial morphology is an important factor in visual communication. However, developmental changes in facial morphology have not been examined in detail. We studied developmental changes in the facial morphology of the Borneo orangutan (Pongo pygmaeus) by observing 79 individuals of various ages living in the Sepilok Orangutan Rehabilitation Centre (SORC) in Malaysia and in Japanese zoos. We also analyzed photographs of one captive male that were taken over a period of more than 16 years. There were clear morphological changes that occurred with growth, and we identified previously unreported sexual and developmental differences in facial morphology. Light-colored skin around the eyes and mouth is most prominent in animals younger than 3 years, and rapidly decreases in area through the age of approximately 7 years. At the same time, the scattered, erect hairs on the head (infant hair) become thick, dense hairs lying on the head (adult hair) in both sexes. The results suggest that these features are infant signals, and that adult signals may include darkened face color, adult hair, whiskers, and a beard, which begin to develop after the age of approximately 7 years in both sexes. In females, the eyelids remain white even after 10 years, and turn black at around the age of 20; in males, the eyelids turn black before the age of 10. The whiskers and beards of adults are thicker in males than in females, and are fully developed before the age of 10 in males, while they begin to develop in females only after approximately 20 years. White eyelids and undeveloped whiskers and beards may be visual signals that are indicative of young adult females. Our results also show that the facial morphology of the unflanged male is similar to that of the adult female, although it has also been pointed out that unflanged males resemble younger individuals.  相似文献   
138.
Split-hand/split-foot malformation (SHFM) is a congenital limb malformation characterized by a median cleft of hand and/or foot due to the absence of central rays. Five loci for syndromic and non-syndromic SHFM, termed SHFM1-5, have been mapped to date. Recently, a 0.5 Mb tandem genomic duplication was found at chromosome 10q24 in SHFM3 families. To refine the minimum duplicated region and to further characterize the SHFM3 locus, we screened 28 non-syndromic SHFM families for tandem genomic duplication of 10q24 by Southern blot and sequence analysis of the dactylin gene. Of 28 families, only two showed genomic rearrangements. Representative patients from the two families exhibit typical SHFM, with symmetrically affected hands and feet. One patient is a familial case with a 511,661 bp tandem duplication, whereas the second is a sporadic case arising from a de novo, 447,338 bp duplication of maternal origin. The smaller duplication in the second patient contained the LBX1, BTRC, POLL, and DPCD genes and a disrupted extra copy of the dactylin gene, and was nearly identical to the smallest known duplicated region of SHFM3. Our results indicate that genomic rearrangement of SHFM3 is rare among non-syndromic SHFM patients and emphasize the importance of screening for genomic rearrangements even in sporadic cases of SHFM.  相似文献   
139.
Neural Wiskott-Aldrich syndrome protein (N-WASP) regulates reorganization of the actin cytoskeleton through activation of the Arp2/3 complex. Here, we show that heat shock protein 90 (HSP90) regulates N-WASP-induced actin polymerization in cooperation with phosphorylation of N-WASP. HSP90 binds directly to N-WASP, but binding alone does not affect the rate of N-WASP/Arp2/3 complex-induced in vitro actin polymerization. An Src family tyrosine kinase, v-Src, phosphorylates and activates N-WASP. HSP90 increases the phosphorylation of N-WASP by v-Src, leading to enhanced N-WASP-dependent actin polymerization. In addition, HSP90 protects phosphorylated and activated N-WASP from proteasome-dependent degradation, resulting in amplification of N-WASP-dependent actin polymerization. Association between HSP90 and N-WASP is increased in proportion to activation of N-WASP by phosphorylation. HSP90 is colocalized and associated with active N-WASP at podosomes in 3Y1/v-Src cells and at growing neurites in PC12 cells, whose actin structures are clearly inhibited by blocking the binding of HSP90 to N-WASP. These findings suggest that HSP90 induces efficient activation of N-WASP downstream of phosphorylation signal by Src family kinases and is critical for N-WASP-dependent podosome formation and neurite extension.  相似文献   
140.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号