首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1598篇
  免费   145篇
  2021年   27篇
  2020年   12篇
  2019年   13篇
  2018年   15篇
  2017年   14篇
  2016年   18篇
  2015年   46篇
  2014年   50篇
  2013年   71篇
  2012年   93篇
  2011年   82篇
  2010年   79篇
  2009年   53篇
  2008年   95篇
  2007年   82篇
  2006年   73篇
  2005年   70篇
  2004年   56篇
  2003年   66篇
  2002年   63篇
  2001年   26篇
  2000年   21篇
  1999年   27篇
  1998年   27篇
  1997年   14篇
  1996年   16篇
  1995年   10篇
  1993年   22篇
  1992年   13篇
  1991年   19篇
  1990年   22篇
  1989年   19篇
  1988年   13篇
  1987年   23篇
  1986年   25篇
  1985年   19篇
  1984年   15篇
  1983年   12篇
  1982年   24篇
  1981年   31篇
  1980年   17篇
  1979年   25篇
  1978年   15篇
  1977年   12篇
  1976年   16篇
  1975年   14篇
  1974年   16篇
  1973年   22篇
  1971年   13篇
  1970年   8篇
排序方式: 共有1743条查询结果,搜索用时 15 毫秒
81.
Apoptosis repressor with caspase recruitment domain (ARC), an anti-apoptotic protein, is highly expressed in differentiated heart and skeletal muscle. Apoptosis and differentiation share numerous common pathways; therefore, we examined the impact of ARC on H9c2-myoblast differentiation. We demonstrate that ARC expression levels increase and stabilize upon differentiation. ARC-overexpression in pre-differentiated H9c2-cells suppresses differentiation; indicated by increased myotube formation, nuclear fusion and expression of the differentiation markers myogenin and troponin-T. ARC-overexpression inhibited myoblast differentiation associated caspase-3 activation, suggesting ARC inhibits myogenic differentiation through caspase inhibition. In summary, we show a novel role for ARC in the regulation of muscle differentiation.  相似文献   
82.
The introduction of new approaches for characterizing microbial communities and imaging soil environments has benefited soil microbiology by providing new ways of detecting and locating microorganisms. Consequently, soil microbiology is poised to progress from simply cataloguing microbial complexity to becoming a systems science. A systems approach will enable the structures of microbial communities to be characterized and will inform how microbial communities affect soil function. Systems approaches require accurate analyses of the spatio-temporal properties of the different microenvironments present in soil. In this Review we advocate the need for the convergence of the experimental and theoretical approaches that are used to characterize and model the development of microbial communities in soils.  相似文献   
83.
BACKGROUND: Diabetes mellitus during pregnancy increases the risk for congenital heart disease in the offspring. The majority of the cardiovascular malformations occur in the outflow tract and pharyngeal arch arteries, where neural crest cells are essential for normal development. We studied the effects of specific exposure of neural crest cells to elevated glucose on heart development. Antioxidants reduce the damaging effect of glucose on neural crest cells in vitro; therefore, we investigated the effect of supplementing N-acetylcysteine in vivo. METHODS: Cardiac neural crest of HH 8-12 chicken embryos was directly exposed by a single injection in the neural tube with 30 mM D-glucose (or 30 mM L-glucose as a control). To examine the effect of a reduction in oxidative stress, we added 2 mM N-acetylcysteine to the injected D-glucose. RESULTS: Exposure of neural crest cells to elevated D-glucose-induced congenital heart malformations in 82% of the embryos. In the embryos injected with L-glucose, only 9% developed a heart malformation. As expected, all malformations were located in the outflow tract and pharyngeal arch arteries. The frequency of heart malformations decreased from 82% to 27% when 2 mM N-acetylcysteine was added to the injected D-glucose. CONCLUSIONS: These data are the first to confirm that the vulnerability of neural crest cells to elevated glucose induces congenital heart malformations. The fact that N-acetylcysteine limits the teratogenicity of glucose implies that its damaging effect is mediated by an increase of oxidative stress in the neural crest cells.  相似文献   
84.
85.
86.
International Journal of Primatology - Natural history was the scientific approach used in early primate field studies and through the 1960s. After that, natural history fell out of favor,...  相似文献   
87.
88.
89.
Genomic DNA methylation patterns influence the development and maintenance of function during cellular differentiation. Methylation of regulatory sequences can have long-lasting effects on gene expression if inherited in an epigenetic manner. Recent work suggests that DNA methylation has a regulatory role in differential cytokine gene expression in primary T lymphocytes. Here we show, by clonal lineage analysis, that methylation patterns in the IFN-gamma promoter exhibit long term faithful inheritance in CD44highCD8+ T cells and their progeny, through 16 cell divisions and a clonal expansion of 5 orders of magnitude. Moreover, the demethylated IFN-gamma promoter is faithfully inherited following the withdrawal of T cell stimulation and the loss of detectable IFN-gamma mRNA, consistent with passive rather than active maintenance mechanisms. This represents a form of stable cellular memory, of defined epigenetic characteristics, that may contribute to the maintenance of T cell cytokine expression patterns and T cell memory.  相似文献   
90.
Eimerian parasites display a biologically interesting range of phenotypic variation. In addition to a wide spectrum of drug-resistance phenotypes that are expressed similarly by many other parasites, the Eimeria spp. present some unique phenotypes. For example, unique lines of Eimeria spp. include those selected for growth in the chorioallantoic membrane of the embryonating hens egg or for faster growth (precocious development) in the mature host. The many laboratory-derived egg-adapted or precocious lines also share a phenotype of a marked attenuation of virulence, the basis of which is different as a consequence of the in ovo or in vivo selection procedures used. Of current interest is the fact that some wild-type populations of Eimeria maxima are characterized by an ability to induce protective immunity that is strain-specific. The molecular basis of phenotypes that define Eimeria spp. is now increasingly amenable to investigation, both through technical improvements in genetic linkage studies and the availability of a comprehensive genome sequence for the caecal parasite E. tenella. The most exciting phenotype in the context of vaccination and the development of new vaccines is the trait of strain-specific immunity associated with E. maxima. Recent work in this laboratory has shown that infection of two inbred lines of White Leghorn chickens with the W strain of E. maxima leads to complete protection to challenge with the homologous parasite, but to complete escape of the heterologous H strain, i.e. the W strain induces an exquisitely strain-specific protective immune response with respect to the H strain. This dichotomy of survival in the face of immune-mediated killing has been examined further and, notably, mating between a drug-resistant W strain and a drug-sensitive H strain leads to recombination between the genetic loci responsible for the specificity of protective immunity and resistance to the anticoccidial drug robenidine. Such a finding opens the way forward for genetic mapping of the loci responsible for the induction of protective immunity and integration with the genome sequencing efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号