首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1876篇
  免费   172篇
  国内免费   1篇
  2021年   32篇
  2020年   29篇
  2019年   53篇
  2018年   43篇
  2017年   18篇
  2016年   25篇
  2015年   52篇
  2014年   54篇
  2013年   89篇
  2012年   90篇
  2011年   77篇
  2010年   86篇
  2009年   54篇
  2008年   102篇
  2007年   95篇
  2006年   84篇
  2005年   78篇
  2004年   54篇
  2003年   68篇
  2002年   68篇
  2001年   36篇
  2000年   24篇
  1999年   33篇
  1998年   42篇
  1997年   21篇
  1996年   35篇
  1995年   24篇
  1994年   12篇
  1993年   31篇
  1992年   22篇
  1991年   22篇
  1990年   25篇
  1989年   29篇
  1988年   14篇
  1987年   27篇
  1986年   26篇
  1985年   21篇
  1984年   18篇
  1983年   13篇
  1982年   22篇
  1981年   33篇
  1980年   21篇
  1979年   25篇
  1978年   16篇
  1977年   12篇
  1976年   15篇
  1975年   14篇
  1974年   17篇
  1973年   21篇
  1971年   12篇
排序方式: 共有2049条查询结果,搜索用时 734 毫秒
101.
The specific circadian role proposed for endogenous melatonin production was based on a study of sighted people who took low pharmacological doses (500 µg) of this chemical signal for the “biological night”: the magnitude and direction of the induced phase shifts were dependent on what time of day exogenous melatonin was administered and were described by a phase‐response curve that turned out to be the opposite of that for light. We now report that lower (physiological) doses of up to 300 µg can entrain (synchronize) free‐running circadian rhythms of 10 totally blind subjects that would otherwise drift later each day. The resulting log‐linear dose‐response curve in the physiological range adds support for a circadian function of endogenous melatonin in humans. Efficacy of exogenous doses in the physiological range are of clinical significance for totally blind people who will need to take melatonin daily over their entire lifetimes in order to remain entrained to the 24 h day. Left untreated, their free‐running endocrine, metabolic, behavioral, and sleep/wake cycles can be almost as burdensome as not having vision.  相似文献   
102.
The neuromuscular system used to stabilize upright posture in humans is a nonlinear dynamical system with time delays. The analysis of this system is important for improving balance and for early diagnosis of neuromuscular disease. In this work, we study the dynamic coupling between the neuromuscular system and a balance board—an unstable platform often used to improve balance in young athletes, and older or neurologically impaired patients. Using a simple inverted pendulum model of human posture on a balance board, we describe a surprisingly broad range of divergent and oscillatory CoP/CoM responses associated with instabilities of the upright equilibrium. The analysis predicts that a variety of sudden changes in the stability of upright postural equilibrium occurs with slow continuous deterioration in balance board stiffness, neuromuscular gain, and time delay associated with the changes in proprioceptive/vestibular/visual-neuromuscular feedback. The analysis also provides deeper insight into changes in the control of posture that enable stable upright posture on otherwise unstable platforms.  相似文献   
103.
104.
105.
The angiotensin I-converting enzyme (ACE) converts the decapeptide angiotensin I (Ang I) into angiotensin II by releasing the C-terminal dipeptide. A novel approach combining enzymatic and electron paramagnetic resonance (EPR) studies was developed to determine the enzyme effect on Ang I containing the paramagnetic 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) at positions 1, 3, 8, and 9. Biological assays indicated that TOAC(1)-Ang I maintained partly the Ang I activity, and that only this derivative and the TOAC(3)-Ang I were cleaved by ACE. Quenching of Tyr(4) fluorescence by TOAC decreased with increasing distance between both residues, suggesting an overall partially extended structure. However, the local bend known to be imposed by the substituted diglycine TOAC is probably responsible for steric hindrance, not allowing the analogues containing TOAC at positions 8 and 9 to act as substrates. In some cases, although substrates and products differ by only two residues, the difference between their EPR spectral lineshapes allows monitoring the enzymatic reaction as a function of time.  相似文献   
106.
Apoptosis repressor with caspase recruitment domain (ARC), an anti-apoptotic protein, is highly expressed in differentiated heart and skeletal muscle. Apoptosis and differentiation share numerous common pathways; therefore, we examined the impact of ARC on H9c2-myoblast differentiation. We demonstrate that ARC expression levels increase and stabilize upon differentiation. ARC-overexpression in pre-differentiated H9c2-cells suppresses differentiation; indicated by increased myotube formation, nuclear fusion and expression of the differentiation markers myogenin and troponin-T. ARC-overexpression inhibited myoblast differentiation associated caspase-3 activation, suggesting ARC inhibits myogenic differentiation through caspase inhibition. In summary, we show a novel role for ARC in the regulation of muscle differentiation.  相似文献   
107.
BACKGROUND: Diabetes mellitus during pregnancy increases the risk for congenital heart disease in the offspring. The majority of the cardiovascular malformations occur in the outflow tract and pharyngeal arch arteries, where neural crest cells are essential for normal development. We studied the effects of specific exposure of neural crest cells to elevated glucose on heart development. Antioxidants reduce the damaging effect of glucose on neural crest cells in vitro; therefore, we investigated the effect of supplementing N-acetylcysteine in vivo. METHODS: Cardiac neural crest of HH 8-12 chicken embryos was directly exposed by a single injection in the neural tube with 30 mM D-glucose (or 30 mM L-glucose as a control). To examine the effect of a reduction in oxidative stress, we added 2 mM N-acetylcysteine to the injected D-glucose. RESULTS: Exposure of neural crest cells to elevated D-glucose-induced congenital heart malformations in 82% of the embryos. In the embryos injected with L-glucose, only 9% developed a heart malformation. As expected, all malformations were located in the outflow tract and pharyngeal arch arteries. The frequency of heart malformations decreased from 82% to 27% when 2 mM N-acetylcysteine was added to the injected D-glucose. CONCLUSIONS: These data are the first to confirm that the vulnerability of neural crest cells to elevated glucose induces congenital heart malformations. The fact that N-acetylcysteine limits the teratogenicity of glucose implies that its damaging effect is mediated by an increase of oxidative stress in the neural crest cells.  相似文献   
108.
109.
110.
The effective treatment of urethral stricture remains a medical problem. The use of proinflammatory cytokines as stimuli to improve the reparative efficacy of mesenchymal stem cells (MSCs) towards damaged tissues represents an evolving field of investigation. However, the therapeutic benefits of this strategy in the treatment of urethral stricture remain unknown. Here, we enriched exosomes derived from human umbilical cord-derived MSCs pretreated with or without tumor necrosis factor alpha (TNF-α) to evaluate their therapeutic effects in an in vivo model of TGFβ1-induced urethral stricture. Male Sprague-Dawley rats received sham (saline) or TGFβ1 injections to urethral tissues followed by incisions in the urethra. Animals in the TGFβ1 injection (urethral fibrosis) cohort were subsequently injected with vehicle control, or with exosomes derived from MSCs cultured with or without TNF-α. After 4 weeks, rats underwent ultrasound evaluation and, following euthanasia, urethral tissues were harvested for histological and molecular analysis. In vitro, the effects of MSC-derived exosomes on fibroblast secretion of collagen and cytokines were studied by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. Exosomes derived from MSCs pretreated with TNF-α were more effective in suppressing urethral fibrosis and stricture than exosomes from untreated MSCs. We found that miR-146a, an anti-inflammatory miRNA, was strongly upregulated in TNF-α-stimulated MSCs and was selectively packaged into exosomes. Moreover, miR-146a-containing exosomes were taken up by fibroblasts and inhibited fibroblast activation and associated inflammatory responses, a finding that may underlie the therapeutic mechanism for suppression of urethral stricture. Inhibition of miR-146a in TNF-α-treated MSCs partially reduced antifibrotic effects and increased the release of proinflammatory factors of exosomes derived from these cells. Together these findings demonstrate that exosomes derived from TNF-α-treated MSCs are of therapeutic benefit in urethral fibrosis, suggesting that this strategy may have utility as an adjuvant therapy in the treatment of urethral stricture diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号