首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   9篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   12篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1971年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
61.
1. Specialisation in dispersal by alate aphids often imposes constraints on other functions, particularly a reduction in fecundity due to wing development. Short‐distance flight from patches of high population density to uninfested plants may provide temporary predator‐free space, compensating for low fecundity. However, this theoretical prediction has not been explored experimentally. 2. To test this hypothesis, a field cage experiment was conducted in which Aphis glycines populations initiated with controlled proportions of apterous and alate individuals were exposed to predation, while predator‐free space was accessible only through flight. It was predicted that an investment in alate individuals would benefit a population under predation, regardless of associated costs to fecundity. 3. As expected, a strong trade‐off was observed between fecundity and wing development. However, populations initiated with a fixed proportion of alate and apterous individuals showed no reductions in final population size compared with populations initiated with apterous individuals exclusively. Moreover, the initial presence of alate individuals in the populations increased aphid prevalence (i.e. proportion of plants colonised). Similarly, both increased population size and prevalence were observed when predator‐free space was accessible through flight, as opposed to when it was inaccessible. 4. These results show that despite high costs to fecundity, an investment in alate individuals is neither beneficial nor detrimental to population size when predator‐free space is accessible, but increases aphid prevalence. It is concluded that prevalence might provide an ecological advantage important enough to warrant the production of alate morphs under intense predation.  相似文献   
62.
This study investigates the in vitro modulatory effects of interferon‐γ (IFN‐γ) and interleukin‐4 (IL‐4) on both proliferative bovine T cell responses and IL‐10 production induced by different antigens [crude larval extract and the purified fractions hypodermin A, B and C (HyA, HyB, HyC)] obtained from first instars of Hypoderma lineatum (Diptera: Oestridae), alone or in the presence of the mitogen concanavalin A. Incubation with the different parasitic antigens resulted in significant inhibition of T cell proliferation and IL‐10 production, which, in general, did not revert after the addition of IFN‐γ and IL‐4. In the absence of antigens, IL‐4 induced significant inhibition of mitogen‐induced T cell responses. Exogenous IFN‐γ exhibited an inhibitory effect on cell proliferation in the presence of the purified fractions HyB and HyC. These in vitro data suggest that far from neutralizing the effects of larval antigens, the addition of IFN‐γ potentiates their anti‐proliferative activity; by contrast, IL‐4 had no consistent effects on proliferative responses to Hypoderma. IL‐4 provoked an increment of IL‐10 levels in supernatants of HyB‐stimulated cells. In conclusion, exogenous IFN‐γ and IL‐4 were unable to counteract the suppressor effects of H. lineatum antigens.  相似文献   
63.
Mesenchymal stem cells (MSC) are capable of protecting cells harboring mitochondrial damage. This protection is associated with the transfer of mitochondria through tunneling nanotubes (TNT) from MSC to the injured cells. In this issue of The EMBO Journal, the group of Anurag Agrawal shows that mitochondrial transfer is dependent on the levels of Miro1, a mitochondrial Rho‐GTPase that regulates intercellular mitochondrial movement. Miro1 is the first protein shown to accelerate mitochondrial transfer. Amplifying the mitochondrial transfer phenomenon may allow for the study of the mechanisms that regulate it and contribute to our understanding of its role in disease and aging.  相似文献   
64.
Fatty acids suppress autophagic turnover in β-cells   总被引:1,自引:0,他引:1  
Recent studies have shown that autophagy is essential for proper β-cell function and survival. However, it is yet unclear under what pathogenic conditions autophagy is inhibited in β-cells. Here, we report that long term exposure to fatty acids and glucose block autophagic flux in β-cells, contributing to their toxic effect. INS1 cells expressing GFP-LC3 (an autophagosome marker) were treated with 0.4 mm palmitate, 0.4 mm oleate, and various concentrations of glucose for 22 h. Kinetics of the effect of fatty acids on autophagy showed a biphasic response. During the second phase of autophagy, the size of autophagosomes and the content of autophagosome substrates (GFP-LC3, p62) and endogenous LC3 was increased. During the same phase, fatty acids suppressed autophagic degradation of long lived protein in both INS1 cells and islets. In INS1 cells, palmitate induced a 3-fold decrease in the number and the acidity of Acidic Vesicular Organelles. This decrease was associated with a suppression of hydrolase activity, suppression of endocytosis, and suppression of oxidative phosphorylation. The combination of fatty acids with glucose synergistically suppressed autophagic turnover, concomitantly suppressing insulin secretion. Rapamycin treatment resulted in partial reversal of the inhibition of autophagic flux, the inhibition of insulin secretion, and the increase in cell death. Our results indicate that excess nutrient could impair autophagy in the long term, hence contributing to nutrient-induced β-cell dysfunction. This may provide a novel mechanism that connects diet-induced obesity and diabetes.  相似文献   
65.
66.
Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS.  相似文献   
67.
68.
Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose‐stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL‐treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL‐treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL‐exposed islets.  相似文献   
69.
Microorganisms in dental plaque live in constant association with saliva. The role of saliva in the adherence of bacteria to the teeth and the antibacterial properties of saliva have been well investigated; less interest has been shown in the possible role of saliva as a substrate for oral microorganisms. In this study it was shown that saliva can serve as a growth medium for oral Streptococcus spp. and Actinomyces viscosus. The cell production of these organisms on saliva was carbohydrate limited. The doubling times for growth on glucose-supplemented saliva (4 to 5 mmol/liter) ranged from 1.6 to 4.0 h. The availability of carbohydrate sources for the oral microflora is discussed in relation to microbial growth in the oral cavity.  相似文献   
70.
Abstract:  A revision of thelodont scales from the Lower Devonian of the Iberian Chains enables their grouping into two taxa: Turinia pagei and T. nachoi sp. nov. These taxa are clearly distinguishable by morphological and histological features; they also have a different stratigraphic range ( T. pagei is restricted to Lochkovian strata, whereas T. nachoi sp. nov. occurs within lower–middle Pragian rocks). The new species is represented by head, transitional (cephalopectoral) and trunk scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号