首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   14篇
  111篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   8篇
  2013年   4篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1971年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
21.
22.
The anti-cancer activity of calcitriol, the active metabolite of Vitamin D, in the colon is usually attributed to its anti-proliferative and pro-differentiative actions. The levels of reactive oxygen species (ROS) are high in colon carcinomas due to increased aerobic metabolism and exposure to various anti-cancer modalities. We examined whether calcitriol modulates the response of colon cancer cells to the cytotoxic action of the common mediator of ROS injury, H2O2. Pretreatment with calcitriol (100 nM, 48 h) sensitized HT-29 colon cancer cells to cell death induced by acute exposure to H2O2 or chronic exposure to the H2O2 generating system, glucose/glucose-oxidase. Although the morphological features of H2O2-induced HT-29 cell death are consistent with apoptosis, we detected no executioner caspase activation in response to cytotoxic concentrations of H2O2 and treatment with a pan-caspase inhibitor did not affect H2O2-induced cytotoxicity nor its enhancement by calcitriol. Conversely, exposure of HT-29 cells to sub-toxic concentrations of H2O2 resulted in low executioner caspase activation that was inhibited by pretreatment with calcitriol. The sensitization of colon cancer cells to ROS-induced cytotoxicity may contribute to its assumed action as a chemopreventive agent and to its therapeutic potential alone or in combination with other anti-cancer modalities.  相似文献   
23.
Primary open angle glaucoma (POAG) is a major blindness-causingdisease, characterized by elevated intraocular pressure dueto an insufficient outflow of aqueous humor. The trabecularmeshwork (TM) lining the aqueous outflow pathway modulates theaqueous outflow facility. TM cell adhesion, cell–matrixinteractions, and factors that influence Rho signaling in TMcells are thought to play a pivotal role in the regulation ofaqueous outflow. In a recent study, we demonstrated that galectin-8(Gal8) modulates the adhesion and cytoskeletal arrangement ofTM cells and that it does so through binding to β1 integrinsand inducing Rho signaling. The current study is aimed at thecharacterization of the mechanism by which Gal8 mediates TMcell adhesion and spreading. We demonstrate here that TM cellsadhere to and spread on Gal8-coated wells but not on galectin-1(Gal1)- or galectin-3 (Gal3)-coated wells. The adhesion of TMcells to Gal8-coated wells was abolished by a competing sugar,β-lactose, but not by a noncompeting sugar, sucrose. Also,a trisaccharide, NeuAc2-3Galβ1-4GlcNAc, which binds specificallyto the N-CRD of Gal8, inhibited the spreading of TM cells toGal8-coated wells. In contrast, NeuAc2-6Galβ1-4GlcNAc whichlacks affinity for Gal8 had no effect. Affinity chromatographyof cell extracts on a Gal8-affinity column and binding experimentswith plant lectins, Maakia Amurensis and Sambucus Nigra, revealedthat 3β1, 5β1, and vβ1 integrins are major counterreceptorsof Gal8 in TM cells and that TM cell β1 integrins carrypredominantly 2-3-sialylated glycans, which are high-affinityligands for Gal8 but not for Gal1 or Gal3. These data lead usto propose that Gal8 modulates TM cell adhesion and spreading,at least in part, by interacting with 2-3-sialylated glycanson β1 integrins.  相似文献   
24.
Mitogen-activated protein (MAP) kinase cascades are fundamental components of the signaling pathways associated with plant immunity. Despite the large number of MAP kinase kinase kinases (MAPKKK) encoded in the plant genome, only very few of them have an assigned function. Here, we identified MAPKKK gene of tomato (Solanum lycopersicum), SIMAPKKKε, which is required for hypersensitive response cell death and disease resistance against Gram-negative bacterial pathogens. Silencing of SIMAPKKKε compromised tomato resistance to Xanthomonas campestris and Pseudomonas syringae strains, resulting in the appearance of disease symptoms and enhanced bacterial growth. In addition, silencing of NbMAPKKKε in Nicotiana benthamiana plants significantly inhibited the cell death triggered by expression of different R gene/effector gene pairs. Conversely, overexpression of either the full-length SIMAPKKKε gene or its kinase domain in N. benthamiana leaves caused pathogen-independent activation of cell death that required an intact kinase catalytic domain. Moreover, by suppressing the expression of various MAPKK and MAPK genes and overexpressing the SIMAPKKKε kinase domain, we identified a signaling cascade acting downstream of SIMAPKKKε that includes MEK2, WIPK and SIPK. Additional epistasis experiments revealed that SIPKK functions as a negative regulator of SIMAPKKKε-mediated cell death. Our results provide evidence that SIMAPKKKε is a signaling molecule that positively regulates cell death networks associated with plant immunity.  相似文献   
25.
Acute Tubular Necrosis (ATN) causes severe damage to the kidney epithelial tubular cells and is often associated with severe renal dysfunction. Stem-cell based therapies may provide alternative approaches to treating of ATN. We have previously shown that clonal c-kitpos stem cells, derived from human amniotic fluid (hAFSC) can be induced to a renal fate in an ex-vivo system. Herein, we show for the first time the successful therapeutic application of hAFSC in a mouse model with glycerol-induced rhabdomyolysis and ATN. When injected into the damaged kidney, luciferase-labeled hAFSC can be tracked using bioluminescence. Moreover, we show that hAFSC provide a protective effect, ameliorating ATN in the acute injury phase as reflected by decreased creatinine and BUN blood levels and by a decrease in the number of damaged tubules and apoptosis therein, as well as by promoting proliferation of tubular epithelial cells. We show significant immunomodulatory effects of hAFSC, over the course of ATN. We therefore speculate that AFSC could represent a novel source of stem cells that may function to modulate the kidney immune milieu in renal failure caused by ATN.  相似文献   
26.

Background  

Gene duplications have been hypothesized to be a major factor in enabling the evolution of tissue differentiation. Analyses of the expression profiles of duplicate genes in mammalian tissues have indicated that, with time, the expression patterns of duplicate genes diverge and become more tissue specific. We explored the relationship between duplication events, the time at which they took place, and both the expression breadth of the duplicated genes and the cumulative expression breadth of the gene family to which they belong.  相似文献   
27.
Plasmodium species have evolved complex biology to adapt to different hosts and changing environments throughout their life cycle. Remarkably, these adaptations are achieved by a relatively small genome. One way by which the parasite expands its proteome is through alternative splicing (AS). We recently identified PfSR1 as a bona fide Ser/Arg‐rich (SR) protein that shuttles between the nucleus and cytoplasm and regulates AS in Plasmodium falciparum. Here we show that PfSR1 is localized adjacent to the Nuclear Pore Complex (NPC) clusters in the nucleus of early stage parasites. To identify the endogenous RNA targets of PfSR1, we adapted an inducible overexpression system for tagged PfSR1 and performed RNA immunoprecipitation followed by microarray analysis (RIP‐chip) to recover and identify the endogenous RNA targets that bind PfSR1. Bioinformatic analysis of these RNAs revealed common sequence motifs potentially recognized by PfSR1. RNA‐EMSAs show that PfSR1 preferentially binds RNA molecules containing these motifs. Interestingly, we find that PfSR1 not only regulates AS but also the steady‐state levels of mRNAs containing these motifs in vivo.  相似文献   
28.
29.
Considering the importance of scientific interactions, understanding the principles that govern fruitful scientific research is crucial to policy makers and scientists alike. The outcome of an interaction is to a large extent dependent on the balancing of contradicting motivations accompanying the establishment of collaborations. Here, we assembled a dataset of nearly 20,000 publications authored by researchers affiliated with ten top universities. Based on this data collection, we estimated the extent of different interaction types between pairwise combinations of researchers. We explored the interplay between the overlap in scientific interests and the tendency to collaborate, and associated these estimates with measures of scientific quality and social accessibility aiming at studying the typical resulting gain of different interaction patterns. Our results show that scientists tend to collaborate more often with colleagues with whom they share moderate to high levels of mutual interests and knowledge while cooperative tendency declines at higher levels of research-interest overlap, suggesting fierce competition, and at the lower levels, suggesting communication gaps. Whereas the relative number of alliances dramatically differs across a gradient of research overlap, the scientific impact of the resulting articles remains similar. When considering social accessibility, we find that though collaborations between remote researchers are relatively rare, their quality is significantly higher than studies produced by close-circle scientists. Since current collaboration patterns do not necessarily overlap with gaining optimal scientific quality, these findings should encourage scientists to reconsider current collaboration strategies.  相似文献   
30.
Meeting the projected 50% increase in global grain demand by 2030 without further environmental degradation poses a major challenge for agricultural production. Because surface ozone (O3) has a significant negative impact on crop yields, one way to increase future production is to reduce O3‐induced agricultural losses. We present two strategies whereby O3 damage to crops may be reduced. We first examine the potential benefits of an O3 mitigation strategy motivated by climate change goals: gradual emission reductions of methane (CH4), an important greenhouse gas and tropospheric O3 precursor that has not yet been targeted for O3 pollution abatement. Our second strategy focuses on adapting crops to O3 exposure by selecting cultivars with demonstrated O3 resistance. We find that the CH4 reductions considered would increase global production of soybean, maize, and wheat by 23–102 Mt in 2030 – the equivalent of a ~2–8% increase in year 2000 production worth $3.5–15 billion worldwide (USD2000), increasing the cost effectiveness of this CH4 mitigation policy. Choosing crop varieties with O3 resistance (relative to median‐sensitivity cultivars) could improve global agricultural production in 2030 by over 140 Mt, the equivalent of a 12% increase in 2000 production worth ~$22 billion. Benefits are dominated by improvements for wheat in South Asia, where O3‐induced crop losses would otherwise be severe. Combining the two strategies generates benefits that are less than fully additive, given the nature of O3 effects on crops. Our results demonstrate the significant potential to sustainably improve global agricultural production by decreasing O3‐induced reductions in crop yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号