首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   17篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   4篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   9篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
  1980年   2篇
  1971年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
81.
We present here a comprehensive analysis of the complement of enzymes in a large variety of species. As enzymes are a relatively conserved group there are several classification systems available that are common to all species and link a protein sequence to an enzymatic function. Enzymes are therefore an ideal functional group to study the relationship between sequence expansion, functional divergence and phenotypic changes. By using information retrieved from the well annotated SWISS-PROT database together with sequence information from a variety of fully sequenced genomes and information from the EC functional scheme we have aimed here to estimate the fraction of enzymes in genomes, to determine the extent of their functional redundancy in different domains of life and to identify functional innovations and lineage specific expansions in the metazoa lineage. We found that prokaryote and eukaryote species differ both in the fraction of enzymes in their genomes and in the pattern of expansion of their enzymatic sets. We observe an increase in functional redundancy accompanying an increase in species complexity. A quantitative assessment was performed in order to determine the degree of functional redundancy in different species. Finally, we report a massive expansion in the number of mammalian enzymes involved in signalling and degradation.  相似文献   
82.

Background  

The combination of complete genome sequence information with expression data enables us to characterize the relationship between a protein's evolutionary origin or functional category and its expression pattern. In this study, mouse proteins were assigned into functional and phyletic groups and the gene expression patterns of the different protein groupings were examined by microarray analysis in various mouse tissues.  相似文献   
83.
Regulation of the release and function of tumor cell-derived soluble CD44   总被引:7,自引:0,他引:7  
CD44, a major receptor for glycosaminoglycan hyaluronan (HA), is a broadly distributed cell surface glycoprotein implicated in multiple functions, including tumor growth and dissemination. The affinity of surface CD44 for HA is subject to regulation at several levels. CD44 is found in multiple phases, including as an integral transmembrane protein and as soluble fragment of the extracellular domain found in the circulation and other body fluids. Transmembrane CD44 and its ability to interact with HA have been a focus of numerous studies in the past, but the function of soluble CD44 remains obscure. Interestingly, malignant diseases are often associated with an increase in the plasma level of CD44. The delineation of the HA binding capacity of tumor-derived soluble CD44 is an important step toward understanding the biological function of this molecule. In this study, we demonstrate that tumor cells activated to bind HA by cytokines rapidly release CD44 upon treatment with phorbol ester (PMA). The affinity for HA of the soluble CD44 released in response to PMA varied depending on the cytokine pretreatment. These results suggest that the function of tumor-derived soluble CD44, like the transmembrane form of the receptor, can be regulated.  相似文献   
84.
Overactivation of Ras pathways contributes to oncogenesis and metastasis of epithelial cells in several ways, including interference with cell cycle regulation via the CDK inhibitor p27(Kip1) (p27) and disruption of transforming growth factor beta (TGF-beta) anti-proliferative activity. Here, we show that at high expression levels, constitutively active N-Ras induces cytoplasmic mislocalization of murine and human p27 via the Ral-GEF pathway and disrupts TGF-beta-mediated Smad nuclear translocation by activation of the Mek/Erk pathway. While human p27 could also be mislocalized via the phosphatidylinositol 3-kinase/Akt pathway, only Ral-GEF activation was effective for murine p27, which lacks the Thr157 Akt phosphorylation site of human p27. This establishes a novel role for the Ral-GEF pathway in regulating p27 localization. Interference with either Smad translocation or p27 nuclear localization was sufficient to disrupt TGF-beta growth inhibition. Moreover, expression of activated N-Ras or specific effector loop mutants at lower levels using retroviral vectors induced p27 mislocalization but did not inhibit Smad2/3 translocation, indicating that the effects on p27 localization occur at lower levels of activated Ras. These findings have important implications for the contribution of activated Ras to oncogenesis and for the conversion of TGF-beta from an inhibitory to a metastatic factor in some epithelial tumors.  相似文献   
85.
CD44 is a receptor for the matrix glycosaminoglycan hyaluronan. Proteoglycan forms of CD44 also exhibit affinity for fibronectin and collagen as well as chemokines and growth factors. CD44 plays a role in autoimmunity, inflammation, and tumor progression. Soluble CD44 (sCD44) is found in plasma, and the levels of sCD44 correlate with immune function and some malignancies. The mechanisms by which sCD44 is generated and its function are unknown. We demonstrate here that normal bronchial epithelial cells spontaneously release sCD44. Exposure to phagocyte- and bacterium-derived proteinases markedly increased the release of sCD44 from epithelial cells. The spontaneously released sCD44 was incorporated into high molecular mass complexes derived from the matrix that also contained chondroitin sulfate, fibronectin, hyaluronan, and collagens I and IV. Enzymatic digestion with proteinases liberated sCD44 from the high molecular mass complex. Consistent with the homology of CD44 to proteoglycan core and link proteins, these data suggest that CD44 spontaneously released from normal bronchial epithelial cells can accumulate as an integral component of the matrix, where it may play a role in the organization of matrices and in anchoring growth factors and chemokines to the matrix. Increases in plasma CD44 during immune activation and tumor progression therefore may be a manifestation of the matrix remodeling that occurs in the face of the enhanced proteolytic activity associated with infection, inflammation, and tumor metastasis, leading to alterations in cell-matrix interactions.  相似文献   
86.
The biological activities of many acylated molecules are lipid dependent. Lipids, however, are poorly immunogenic or non-immunogenic. We employed a phage display semi-synthetic human antibody library to isolate anti-lipid antibodies. Selection was done against methyl palmitate, a 16 carbon aliphatic chain, and a major component of bacterial glycolipids and lipoproteins in animal cells. The selected single chain variable fragment (scFv) bound specifically to a 16 carbon aliphatic chain and to a lesser extent to a 14 or 18 carbon aliphatic chain and poorly to either 12, 22 or 8 carbon aliphatic chains. Furthermore, the scFv prevented micelle formation of lipoteichoic acid from Gram-positive bacteria; inhibited lipopolysaccharide-induced tumor necrosis factor alpha release in mononuclear cells; bound to hydrophobic bacterial surfaces, especially those of Gram-positive bacteria, and bound to Lck, a mammalian palmitated lipoprotein. Our data suggest that the phage antibody library can be successfully employed to obtain human anti-aliphatic scFv human antibody fragment with potential therapeutic applications in neutralizing the deleterious effects of bacterial toxins as well as in structure--function analysis of lipoproteins in animal cells.  相似文献   
87.
Murine CD44 is a cell surface glycoprotein that is thought to play a role in leukocyte migration. We studied the structure and expression of CD44 on two populations of macrophages: those that reside in the peritoneum of unprimed mice, and those that have been elicited to migrate into the peritoneum by the intraperitoneal injection of agents that cause localized inflammatory responses. Our studies reveal structural variations in both the extracellular and intracellular domains of CD44 expressed by these two macrophage populations. The form of CD44 in elicited macrophages has an apparent molecular mass that is approximately 5 kD greater and more heterogenous than that in resident macrophages. This structural changes is posttranslational, extracellular, and apparently reflects increases in N-linked glycosylation. It is also specific for CD44 and does not occur with several other glycoproteins examined. This novel regulation of glycosylation may play an important role in the ability of CD44 to bind to different substrates, particularly lectin-like ligands. In addition, we demonstrate that CD44 in resident macrophages is divided into two pools, one containing nonphosphorylated, cytoskeletally associated CD44, and one containing phosphorylated, unassociated CD44. In contrast, CD44 on the surface of elicited macrophages does not associate with the cytoskeleton. The attachment of CD44 to the cytoskeleton involves either direct or indirect association with actin. The regulated association of CD44 with the cytoskeleton suggests that it may influence or be influenced by macrophage mobility.  相似文献   
88.
Anti-Ig-stimulated B lymphoblasts can be restimulated via their surface Ig   总被引:3,自引:0,他引:3  
Engaging AgR (surface Ig) on B lymphocytes leads to rapid inositol phosphate turnover and elevation of intracellular [Ca2+]. Continuous receptor occupancy (greater than 18 h) by anti-Ig leads to transit of most B lymphocytes from G0 to G1 stage of the cell cycle (blast transformation); a fraction of cells continue into S phase but do not proliferate continuously in the absence of growth factors. Prolonged exposure to ligand can induce receptor desensitization of some receptors. We therefore investigated whether such desensitization occurs in B cells activated by insolubilized anti-Ig. Resting B cells and anti-Ig-activated blasts were examined for their potential to elevate [Ca2+]i, maintain viability, and synthesize DNA in response to reexposure to anti-Ig. B cells and anti-Ig blasts had similar basal [Ca2+]i levels. Anti-Ig blasts retained the capacity to increase [Ca2+]i in response to anti-Ig; the magnitude of the increase was equal to or greater than that observed with resting B cells and occurred in more than 90% of cells. Isolated anti-Ig blasts subcultured in the presence of T cell-derived growth factors for 3 to 5 days responded to restimulation by anti-Ig with an increase in [Ca2+]i similar to that observed in freshly isolated blasts. The B cell and B lymphoblast ion channels were found to be permeable to Ca2+ but impermeable to Mn2+. Finally, blasts restimulated by anti-Ig retained viability and incorporated low levels of [3H]thymidine for 24 h. These results suggest that AgR on activated B lymphocytes can remain functionally coupled to intracellular signaling pathways and can participate in immune responses subsequent to initial activation.  相似文献   
89.
By reaction of 1,2-diaminocyclohexane with the 2,3-butanedione monoxime in the presence of ZnCl2, a new Schiff base complex was obtained. This complex was characterized by elemental analyses, FT-IR, 1H NMR, UV–Vis, and conductivity measurements. The reactivity of this complex to human serum albumin (HSA) under simulative physiological conditions was studied by spectroscopic and molecular docking analysis. Experimental results at various temperatures indicated that the intrinsic fluorescence of protein was quenched through a static quenching mechanism. The negative value of enthalpy change and positive value of entropy change indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of Zn(II) complex to HSA. FT-IR, three-dimensional fluorescence, and UV–Vis absorption results showed that the secondary structure of HSA changed after Zn(II) complex bound to protein. The binding distance was calculated to be 4.96 nm, according to fluorescence resonance energy transfer. Molecular docking results confirmed the spectroscopic results and showed that above complex is embedded into subdomain IIA of protein. All these experimental and computational results clarified that Zn(II) complex could bind with HSA effectively, which could be a useful guideline for efficient Schiff-base drug design.  相似文献   
90.
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light–dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox‐sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle‐specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark‐dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re‐oxidation was observed upon re‐illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light–dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light‐dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号