首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   17篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   4篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   9篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
  1980年   2篇
  1971年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
21.
22.
Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.  相似文献   
23.

Objective

Klotho is an aging-modulating protein expressed mainly in the kidneys and choroid plexus, which can also be shed, released into the circulation and act as a hormone. Klotho deficient mice are smaller compared to their wild-type counterparts and their somatotropes show marked atrophy and reduced number of secretory granules. Recent data also indicated an association between klotho levels and growth hormone (GH) levels in acromegaly. We aimed to study the association between klotho levels and GH deficiency (GHD) in children with growth impairment.

Design

Prospective study comprising 99 children and adolescents (aged 9.0±3.7 years, 49 male) undergoing GH stimulation tests for short stature (height-SDS = −2.1±0.6). Klotho serum levels were measured using an α-klotho ELISA kit.

Results

Klotho levels were significantly lower (p<0.001) among children with organic GHD (n = 11, 727±273 pg/ml) compared to both GH sufficient participants (n = 59, 1497±754 pg/ml) and those with idiopathic GHD (n = 29, 1645±778 pg/ml). The difference between GHS children and children with idiopathic GHD was not significant. Klotho levels positively correlated with IGF-1- standard deviation scores (SDS) (R = 0.45, p<0.001), but were not associated with gender, pubertal status, age or anthropometric measurements.

Conclusions

We have shown, for the first time, an association between low serum klotho levels and organic GHD. If validated by additional studies, serum klotho may serve as novel biomarker of organic GHD.  相似文献   
24.
Copying the majority is generally an adaptive social learning strategy but the majority does not always know best. Previous work has demonstrated young children''s selective uptake of information from a consensus over a lone dissenter. The current study examined children''s flexibility in following the majority: do they overextend their reliance on this heuristic to situations where the dissenting individual has privileged knowledge and should be trusted instead? Four- to six- year-olds (N = 103) heard conflicting claims about the identity of hidden drawings from a majority and a dissenter in two between-subject conditions: in one, the dissenter had privileged knowledge over the majority (he drew the pictures); in the other he did not (they were drawn by an absent third party). Overall, children were less likely to trust the majority in the Privileged Dissenter condition. Moreover, 5- and 6- year-olds made majority-based inferences when the dissenter had no privileged knowledge but systematically endorsed the dissenter when he drew the pictures. The current findings suggest that by 5 years, children are able to make an epistemic-based judgment to decide whether or not to follow the majority rather than automatically following the most common view.  相似文献   
25.
Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP''s protective effects in the lung.  相似文献   
26.
Acetylcholinesterase is a critical enzyme that regulates neurotransmission by catalyzing the breakdown of neurotransmitter acetylcholine in synapses of the nervous system. It is an important target for therapeutic drugs that treat Alzheimer’s disease. Since, the degree of flexibility of the side chains of the residues in the active-site gorge of Acetylcholinesterase is diverse it results in different bound ligand conformations. The side-chain conformations of Ser293, Tyr341, Leu76, and Val73 are flexible, while the side-chain conformations of Tyr72, Tyr 124, Ser125, Phe295, and Arg296 appear to be fixed. In this study, multi-conformation dynamic pharmacophore models from the donepezyl-binding pocket based on highly populated structures chosen from molecular dynamics simulations were used for screening compounds that can properly bind acetylcholinesterase. Based on these structures, three pharmacophore models were generated. Consequently, 14 hits were retrieved as final candidates by utilizing virtual screening of ZINC database and molecular docking.  相似文献   
27.
28.
The anti-cancer activity of calcitriol, the active metabolite of Vitamin D, in the colon is usually attributed to its anti-proliferative and pro-differentiative actions. The levels of reactive oxygen species (ROS) are high in colon carcinomas due to increased aerobic metabolism and exposure to various anti-cancer modalities. We examined whether calcitriol modulates the response of colon cancer cells to the cytotoxic action of the common mediator of ROS injury, H2O2. Pretreatment with calcitriol (100 nM, 48 h) sensitized HT-29 colon cancer cells to cell death induced by acute exposure to H2O2 or chronic exposure to the H2O2 generating system, glucose/glucose-oxidase. Although the morphological features of H2O2-induced HT-29 cell death are consistent with apoptosis, we detected no executioner caspase activation in response to cytotoxic concentrations of H2O2 and treatment with a pan-caspase inhibitor did not affect H2O2-induced cytotoxicity nor its enhancement by calcitriol. Conversely, exposure of HT-29 cells to sub-toxic concentrations of H2O2 resulted in low executioner caspase activation that was inhibited by pretreatment with calcitriol. The sensitization of colon cancer cells to ROS-induced cytotoxicity may contribute to its assumed action as a chemopreventive agent and to its therapeutic potential alone or in combination with other anti-cancer modalities.  相似文献   
29.
Primary open angle glaucoma (POAG) is a major blindness-causingdisease, characterized by elevated intraocular pressure dueto an insufficient outflow of aqueous humor. The trabecularmeshwork (TM) lining the aqueous outflow pathway modulates theaqueous outflow facility. TM cell adhesion, cell–matrixinteractions, and factors that influence Rho signaling in TMcells are thought to play a pivotal role in the regulation ofaqueous outflow. In a recent study, we demonstrated that galectin-8(Gal8) modulates the adhesion and cytoskeletal arrangement ofTM cells and that it does so through binding to β1 integrinsand inducing Rho signaling. The current study is aimed at thecharacterization of the mechanism by which Gal8 mediates TMcell adhesion and spreading. We demonstrate here that TM cellsadhere to and spread on Gal8-coated wells but not on galectin-1(Gal1)- or galectin-3 (Gal3)-coated wells. The adhesion of TMcells to Gal8-coated wells was abolished by a competing sugar,β-lactose, but not by a noncompeting sugar, sucrose. Also,a trisaccharide, NeuAc2-3Galβ1-4GlcNAc, which binds specificallyto the N-CRD of Gal8, inhibited the spreading of TM cells toGal8-coated wells. In contrast, NeuAc2-6Galβ1-4GlcNAc whichlacks affinity for Gal8 had no effect. Affinity chromatographyof cell extracts on a Gal8-affinity column and binding experimentswith plant lectins, Maakia Amurensis and Sambucus Nigra, revealedthat 3β1, 5β1, and vβ1 integrins are major counterreceptorsof Gal8 in TM cells and that TM cell β1 integrins carrypredominantly 2-3-sialylated glycans, which are high-affinityligands for Gal8 but not for Gal1 or Gal3. These data lead usto propose that Gal8 modulates TM cell adhesion and spreading,at least in part, by interacting with 2-3-sialylated glycanson β1 integrins.  相似文献   
30.
Mitogen-activated protein (MAP) kinase cascades are fundamental components of the signaling pathways associated with plant immunity. Despite the large number of MAP kinase kinase kinases (MAPKKK) encoded in the plant genome, only very few of them have an assigned function. Here, we identified MAPKKK gene of tomato (Solanum lycopersicum), SIMAPKKKε, which is required for hypersensitive response cell death and disease resistance against Gram-negative bacterial pathogens. Silencing of SIMAPKKKε compromised tomato resistance to Xanthomonas campestris and Pseudomonas syringae strains, resulting in the appearance of disease symptoms and enhanced bacterial growth. In addition, silencing of NbMAPKKKε in Nicotiana benthamiana plants significantly inhibited the cell death triggered by expression of different R gene/effector gene pairs. Conversely, overexpression of either the full-length SIMAPKKKε gene or its kinase domain in N. benthamiana leaves caused pathogen-independent activation of cell death that required an intact kinase catalytic domain. Moreover, by suppressing the expression of various MAPKK and MAPK genes and overexpressing the SIMAPKKKε kinase domain, we identified a signaling cascade acting downstream of SIMAPKKKε that includes MEK2, WIPK and SIPK. Additional epistasis experiments revealed that SIPKK functions as a negative regulator of SIMAPKKKε-mediated cell death. Our results provide evidence that SIMAPKKKε is a signaling molecule that positively regulates cell death networks associated with plant immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号