排序方式: 共有98条查询结果,搜索用时 15 毫秒
41.
42.
Self-assembled DNA delivery systems based on cationic lipids are simple to produce and weakly hazardous in comparison with viral vectors, but possess a significant toxicity at high doses. Phospholipids are in contrast intrinsically safe; yet their association with DNA is problematic because of unfavorable electrostatic interactions. We achieve the phospholipid-DNA complexation through the like-charge attraction induced by cations. Monovalent cations are inappropriate due to their poor binding affinity with lipids as inferred from electrophoretic mobility, whereas x-ray diffractions reveal that with multivalent cations, DNA is complexed within an inverted hexagonal liquid-crystalline phase. Coarse-grained Monte Carlo simulations confirm the self-assembly of a DNA rod wrapped into a lipid layer with cations in between acting as molecular glue. Transfection experiments performed with Ca2+ and La3+ demonstrate efficiencies surpassing those obtained with optimized cationic DOTAP-based systems, while preserving the viability of cells. Inspired by bacteriophages that resort to polycations to compact their genetic materials, complexes assembled with tetravalent spermine achieve unprecedented transfection efficiencies for phospholipids. Influence of complex growth time, lipid/DNA mass ratio, and ion concentration are examined. These complexes may initiate new developments for nontoxic gene delivery and fundamental studies of biological self-assembly. 相似文献
43.
44.
Transformation of pBR322 DNA into Shigella occurred at a low frequency. The efficiency of transformation was highest in S. dysenteriae 1 and lowest in S. flexneri. Treatment of cells with CaCl2 for a prolonged period (24h) increased the efficiency of transformation in all strains, except in S. flexneri, where transformation efficiency could not be improved by a variety of manipulations. Transformation efficiency did not increase in any of the strains when transformation was carried out with plasmid DNA obtained from a transformant (homologous transformation), suggesting the absence of a strong restriction-modification system. Extracellular deoxyribonuclease (DNase) levels were low in all the strains tested, but the levels of endogenous DNAse, released after CaCl2 treatment or sonication of the cells, were high. Washing the cells with a solution of CaCl2 did not enhance transformation, suggesting that endogenous DNase could be a significant factor affecting transformation efficiency in species of Shigella. 相似文献
45.
Shireen R Lamandé Matthias M?rgelin Carly Selan G Joost J?bsis Frank Baas John F Bateman 《The Journal of biological chemistry》2002,277(3):1949-1956
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the dominantly inherited disorder, Bethlem myopathy. Glycine mutations that interrupt the Gly-X-Y repetitive amino acid sequence that forms the characteristic collagen triple helix have been defined in four families; however, the effects of these mutations on collagen VI biosynthesis, assembly, and structure have not been determined. In this study, we examined the consequences of Bethlem myopathy triple helical glycine mutations in the alpha1(VI) and alpha2(VI) chains, as well as engineered alpha3(VI) triple helical glycine mutations. Although the Bethlem myopathy and introduced mutations that are toward the N terminus of the triple helix did not measurably affect collagen VI intracellular monomer, dimer, or tetramer assembly, or secretion, the introduced mutation toward the C terminus of the helix severely impaired association of the mutant alpha3(VI) chain with alpha1(VI) and alpha2(VI). Association of the three chains was not completely prevented, however; and some non-disulfide bonded tetramers were secreted. Examination of the secreted Bethlem myopathy and engineered mutant collagen VI by negative staining electron microscopy revealed the striking finding that in all the cell lines a significant proportion of the tetramers contained a kink in the supercoiled triple helical region. Collagen VI tetramers from all of the mutant cell lines also showed a reduced ability to form microfibrils. These results provide the first evidence of the biosynthetic consequences of collagen VI triple helical glycine mutations and indicate that Bethlem myopathy results not only from the synthesis of reduced amounts of structurally normal protein but also from the presence of mutant collagen VI in the extracellular matrix. 相似文献
46.
Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra (SN) of Parkinson's disease (PD) patients. An important biochemical feature of presymptomatic PD is a significant depletion of the thiol antioxidant glutathione (GSH) in these neurons resulting in oxidative stress, mitochondrial dysfunction, and ultimately cell death. We have earlier demonstrated that curcumin, a natural polyphenol obtained from turmeric, protects against peroxynitrite-mediated mitochondrial dysfunction both in vitro and in vivo. Here we report that treatment of dopaminergic neuronal cells and mice with curcumin restores depletion of GSH levels, protects against protein oxidation, and preserves mitochondrial complex I activity which normally is impaired due to GSH loss. Using systems biology and dynamic modeling we have explained the mechanism of curcumin action in a model of mitochondrial dysfunction linked to GSH metabolism that corroborates the major findings of our experimental work. These data suggest that curcumin has potential therapeutic value for neurodegenerative diseases involving GSH depletion-mediated oxidative stress. 相似文献
47.
Roy KR Arunasree KM Dhoot A Aparna R Reddy GV Vali S Reddanna P 《Archives of biochemistry and biophysics》2007,459(2):169-177
We studied the effects of C-Phycocyanin (C-PC), a biliprotein from Spirulina platensis on the 2-acetylaminofluorene (2-AAF)-induced expression of MDR1, encoded by the multidrug resistance (MDR1) gene, in mouse macrophage cell line (RAW 264.7). Our experimental and In silico studies revealed a significant inhibition of 2-AAF-induced expression of MDR1 protein in C-PC treated mouse macrophage cell line. MDR1 induction by 2-AAF was dependent on ROS (reactive oxygen species)-Akt (protein kinase B)-NF-κB (Nuclear factor kappa B) signaling pathway. Generation of ROS, phosphorylation of Akt and corresponding nuclear translocation of NF-κB, the events that play a major role in the induction of MDR1 expression, were decreased significantly in C-PC treated cells. NADPH oxidase inhibitor, DPI (Diphenyl iodide), and pharmacological inhibitor of Akt, Akt inhibitor IV, also showed a reduction in MDR1 expression, although not to the same extent as C-PC mediated inhibition of MDR1 expression. To further understand the mechanism, we created a computational model of the detailed ROS-Akt-NF-κB pathway. C-PC was modeled purely as a ROS scavenger and this representation matched the experimental trends accurately. Also the ROS levels determined through In silico investigation showed that C-PC was more effective in reduction of MDR1 expression than inhibitors of NADPH oxidase and Akt. Our experimental and In silico studies collectively suggest that 2-AAF induces MDR1 by ROS dependent pathway and C-PC is a potential negative regulator of MDR1 expression. This down regulation of MDR1 expression, induced by xenobiotics such as 2-AAF, suggests C-PC’s usefulness in overcoming the drug resistance in cellular systems. 相似文献
48.
49.
50.
Meztlli O. Gaytn Anirudh K. Singh Shireen A. Woodiga Surina A. Patel Seon-Sook An Arturo Vera-Ponce de Len Sean McGrath Anthony R. Miller Jocelyn M. Bush Mark van der Linden Vincent Magrini Richard K. Wilson Todd Kitten Samantha J. King 《PLoS pathogens》2021,17(1)
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. 相似文献