首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   16篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   11篇
  2014年   15篇
  2013年   16篇
  2012年   17篇
  2011年   23篇
  2010年   9篇
  2009年   11篇
  2008年   17篇
  2007年   7篇
  2006年   11篇
  2005年   13篇
  2004年   8篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
101.
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.  相似文献   
102.
Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission in hippocampal CA1 neurons. This effect is mediated by a facilitated synaptic delivery of AMPA receptors, which is accompanied by enhanced NMDA receptor-dependent long-term potentiation (LTP). Both LTP and cognitive enhancement are mediated by an initial PKC activation, which is followed by persistent CaMKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer.  相似文献   
103.

Background

Computational identification of apicoplast-targeted proteins is important in drug target determination for diseases such as malaria. While there are established methods for identifying proteins with a bipartite signal in multiple species of Apicomplexa, not all apicoplast-targeted proteins possess this bipartite signature. The publication of recent experimental findings of apicoplast membrane proteins, called transmembrane proteins, that do not possess a bipartite signal has made it feasible to devise a machine learning approach for identifying this new class of apicoplast-targeted proteins computationally.

Methodology/principal findings

In this work, we develop a method for predicting apicoplast-targeted transmembrane proteins for multiple species of Apicomplexa, whereby several classifiers trained on different feature sets and based on different algorithms are evaluated and combined in an ensemble classification model to obtain the best expected performance. The feature sets considered are the hydrophobicity and composition characteristics of amino acids over transmembrane domains, the existence of short sequence motifs over cytosolically disposed regions, and Gene Ontology (GO) terms associated with given proteins. Our model, ApicoAMP, is an ensemble classification model that combines decisions of classifiers following the majority vote principle. ApicoAMP is trained on a set of proteins from 11 apicomplexan species and achieves 91% overall expected accuracy.

Conclusions/significance

ApicoAMP is the first computational model capable of identifying apicoplast-targeted transmembrane proteins in Apicomplexa. The ApicoAMP prediction software is available at http://code.google.com/p/apicoamp/ and http://bcb.eecs.wsu.edu.  相似文献   
104.
We hypothesized that bacterial populations growing in the absence of antibiotics will accumulate more resistance gene mutations than bacterial populations growing in the presence of antibiotics. If this is so, the prevalence of dysfunctional resistance genes (resistance pseudogenes) could provide a measure of the level of antibiotic exposure present in a given environment. As a proof-of-concept test, we assayed field strains of Escherichia coli for their resistance genotypes using a resistance gene microarray and further characterized isolates that had resistance phenotype-genotype discrepancies. We found a small but significant association between the prevalence of isolates with resistance pseudogenes and the lower antibiotic use environment of a beef cow-calf operation versus a higher antibiotic use dairy calf ranch (Fisher's exact test, P = 0.044). Other significant findings include a very strong association between the dairy calf ranch isolates and phenotypes unexplained by well-known resistance genes (Fisher's exact test, P < 0.0001). Two novel resistance genes were discovered in E. coli isolates from the dairy calf ranch, one associated with resistance to aminoglycosides and one associated with resistance to trimethoprim. In addition, isolates resistant to expanded-spectrum cephalosporins but negative for bla(CMY-2) had mutations in the promoter regions of the chromosomal E. coli ampC gene consistent with reported overexpression of native AmpC beta-lactamase. Similar mutations in hospital E. coli isolates have been reported worldwide. Prevalence or rates of E. coli ampC promoter mutations may be used as a marker for high expanded-spectrum cephalosporin use environments.  相似文献   
105.
Binding of the group A streptococcus (GAS) to respiratory epithelium is mediated by the fibronectin (Fn)-binding adhesin, protein F1. Previous studies have suggested that certain GAS strains express Fn-binding proteins that are different from protein F1. In this study, we have cloned, sequenced, and characterized a gene ( prtF2 ) from GAS strain 100076 encoding a novel Fn-binding protein, termed protein F2. Insertional inactivation of prtF2 in strain 100076 abolishes its high-affinity Fn binding. prtF2 -related genes exist in most GAS strains that lack prtF1 (encoding protein F1) but bind Fn with high affinity. These observations suggest that protein F2 is a major Fn-binding protein in GAS. Protein F2 is highly homologous to Fn-binding proteins from Streptococcus dysgalactiae and Strep-tococcus equisimilis , particularly in its carboxy-terminal portion. Two domains are responsible for Fn binding by protein F2. One domain (FBRD) consists of three consecutive repeats, whereas the other domain (UFBD) resides on a non-repeated stretch of approximately 100 amino acids and is located 100 amino acids amino-terminal of FBRD. Each of these domains is capable of binding Fn when expressed as a separate protein. In strain 100076, protein F2 activity is regulated in response to alterations in the concentration of atmospheric oxygen.  相似文献   
106.
107.
While evidence for the role of the microbiome in shaping host stress tolerance is becoming well-established, to what extent this depends on the interaction between the host and its local microbiome is less clear. Therefore, we investigated whether locally adapted gut microbiomes affect host stress tolerance. In the water flea Daphnia magna, we studied if the host performs better when receiving a microbiome from their source region than from another region when facing a stressful condition, more in particular exposure to the toxic cyanobacteria Microcystis aeruginosa. Therefore, a reciprocal transplant experiment was performed in which recipient, germ-free D. magna, isolated from different ponds, received a donor microbiome from sympatric or allopatric D. magna that were pre-exposed to toxic cyanobacteria or not. We tested for effects on host life history traits and gut microbiome composition. Our data indicate that Daphnia interact with particular microbial strains mediating local adaptation in host stress tolerance. Most recipient D. magna individuals performed better when inoculated with sympatric than with allopatric microbiomes. This effect was most pronounced when the donors were pre-exposed to the toxic cyanobacteria, but this effect was also pond and genotype dependent. We discuss how this host fitness benefit is associated with microbiome diversity patterns.Subject terms: Microbial ecology, Microbial ecology, Freshwater ecology, Microbiome  相似文献   
108.
Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it’s removal from p38α abolishes p38α’s autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation.  相似文献   
109.
BackgroundCytokines are humoral molecules that elicit regulatory function in immunologic pathways. The level and type of cytokine production has become critical in distinguishing physiologic from pathologic immune conditions. Cytokine profiling has become an important biomarker discovery tool in monitoring of the immune system. However, the variations in cytokine levels in individual subjects over time in healthy individuals have not been extensively studied. In this study, we use multiplex bead arrays to evaluate 27 analytes in paired serum samples taken seven days apart from 144 healthy individuals in order to assess variations over a short time period.MethodsFluorescent bead-based immunoassay (Luminex) was used to measure 27 analytes in serum samples. Measurements were performed on matched samples from 144 healthy donors. To assess inter-plate variability, one arbitrarily selected serum sample was analyzed on each of the first ten plates as bridge sample. ResultsUsing the bridge sample, we showed minimal inter-plate variations in the measurement of most analytes. In measurement of cytokines from the 144 patients at two time points, we found that three cytokines (IL-2, IL-15 and GM-CSF) were undetectable and five analytes (RANTES, MCP-1, VEGF, MIP-1β and PDGF-BB) showed significant difference in concentrations at Day 0 compared to Day 7. ConclusionsThe current study demonstrated higher variations in cytokine levels among individuals than were observed for samples obtained one week apart from identical donors. These data suggest that a serum sample from each subject for use as a baseline measurement is a better control for clinical trials rather than sera from a paired cohort.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号