全文获取类型
收费全文 | 24462篇 |
免费 | 1958篇 |
国内免费 | 1829篇 |
专业分类
28249篇 |
出版年
2024年 | 55篇 |
2023年 | 301篇 |
2022年 | 800篇 |
2021年 | 1291篇 |
2020年 | 889篇 |
2019年 | 1041篇 |
2018年 | 1033篇 |
2017年 | 749篇 |
2016年 | 1071篇 |
2015年 | 1468篇 |
2014年 | 1725篇 |
2013年 | 1893篇 |
2012年 | 2250篇 |
2011年 | 1929篇 |
2010年 | 1170篇 |
2009年 | 1019篇 |
2008年 | 1206篇 |
2007年 | 1066篇 |
2006年 | 924篇 |
2005年 | 810篇 |
2004年 | 694篇 |
2003年 | 629篇 |
2002年 | 545篇 |
2001年 | 481篇 |
2000年 | 417篇 |
1999年 | 405篇 |
1998年 | 256篇 |
1997年 | 271篇 |
1996年 | 256篇 |
1995年 | 242篇 |
1994年 | 221篇 |
1993年 | 137篇 |
1992年 | 206篇 |
1991年 | 145篇 |
1990年 | 130篇 |
1989年 | 109篇 |
1988年 | 73篇 |
1987年 | 94篇 |
1986年 | 56篇 |
1985年 | 56篇 |
1984年 | 43篇 |
1983年 | 30篇 |
1982年 | 30篇 |
1981年 | 19篇 |
1980年 | 8篇 |
1979年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
971.
Rapid unfolding of a domain populates an aggregation-prone intermediate that can be recognized by GroEL 总被引:3,自引:0,他引:3
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate. 相似文献
972.
Jinbo Gao Wenjun Zhou Yuntong Liu Jing Zhu Liqing Sha Qinhai Song Hongli Ji Youxing Lin Xuehai Fei Xiaolong Bai Xiang Zhang Yun Deng Xiaobao Deng Guirui Yu Junhui Zhang Xunhua Zheng John Grace Yiping Zhang 《Ecosystems》2018,21(5):1013-1026
Litter inputs are expected to have a strong impact on soil N2O efflux. This study aimed to assess the effects of the litter decomposition process and nutrient efflux from litter to soil on soil N2O efflux in a tropical rainforest. A paired study with a control (L) treatment and a litter-removed (NL) treatment was followed for 2 years, continuously monitoring the effects of these treatments on soil N2O efflux, fresh litter input, decomposed litter carbon (LCI) and nitrogen (LNI), soil nitrate (NO3 ?–N), ammonium (NH4 +–N), dissolved organic carbon (DOC), and dissolved nitrogen (DN). Soil N2O flux was 0.48 and 0.32 kg N2O–N ha?1 year?1 for the L and NL treatments, respectively. Removing the litter caused a decrease in the annual soil N2O emission by 33%. The flux values from the litter layer were higher in the rainy season as compared to the dry season (2.10 ± 0.28 vs. 1.44 ± 0.35 μg N m?2 h?1). The N2O fluxes were significantly correlated with the soil NO3 ?–N contents (P < 0.05), indicating that the N2O emission was derived mainly from denitrification as well as other NO3 ? reduction processes. Suitable soil temperature and moisture sustained by rainfall were jointly attributed to the higher soil N2O fluxes of both treatments in the rainy season. The N2O fluxes from the L were mainly regulated by LCI, whereas those from the NL were dominated jointly by soil NO3 ? content and temperature. The effects of LCI and LNI on the soil N2O fluxes were the greatest in the 2 months after litter decomposition. Our results show that litter may affect not only the variability in the quantity of N2O emitted, but also the mechanisms that govern N2O production. However, further studies are still required to elucidate the impacting mechanisms of litter decomposition on N2O emission from tropical forests. 相似文献
973.
Xuebing Xu Tong Wu Renjie Lin Shengze Zhu Jie Ji Dandan Jin Mengxiang Huang Wenjie Zheng Wenkai Ni Feng Jiang Shihai Xuan Mingbing Xiao 《Journal of cellular and molecular medicine》2023,27(23):3672-3680
The migrasome is a new organelle discovered by Professor Yu Li in 2015. When cells migrate, the membranous organelles that appear at the end of the retraction fibres are migrasomes. With the migration of cells, the retraction fibres which connect migrasomes and cells finally break. The migrasomes detach from the cell and are released into the extracellular space or directly absorbed by the recipient cell. The cytoplasmic contents are first transported to the migrasome and then released from the cell through the migrasome. This release mechanism, which depends on cell migration, is named ‘migracytosis’. The main components of the migrasome are extracellular vesicles after they leave the cell, which are easy to remind people of the current hot topic of exosomes. Exosomes are extracellular vesicles wrapped by the lipid bimolecular layer. With extensive research, exosomes have solved many disease problems. This review summarizes the differences between migrasomes and exosomes in size, composition, property and function, extraction method and regulation mechanism for generation and release. At the same time, it also prospects for the current hotspot of migrasomes, hoping to provide literature support for further research on the generation and release mechanism of migrasomes and their clinical application in the future. 相似文献
974.
Jae K. Lee Lauren C. Case Andrea F. Chan Yuhong Zhu Marc Tessier‐Lavigne Binhai Zheng 《Genesis (New York, N.Y. : 2000)》2009,47(11):751-756
The very limited ability to regenerate axons after injury in the mature mammalian central nervous system (CNS) has been partly attributed to the growth restrictive nature of CNS myelin. Oligodendrocyte myelin glycoprotein (OMgp) was identified as a major myelin‐derived inhibitor of axon growth. However, its role in axon regeneration in vivo is poorly understood. Here we describe the generation and molecular characterization of an OMgp allelic series. With a single gene targeting event and Cre/FLP mediated recombination, we generated an OMgp null allele with a LacZ reporter, one without a reporter gene, and an OMgp conditional allele. This allelic series will aid in the study of OMgp in adult CNS axon regeneration using mouse models of spinal cord injury. The conditional allele will overcome developmental compensation when employed with an inducible Cre, and allows for the study of temporal and tissue/cell type‐specific roles of OMgp in CNS injury‐induced axonal plasticity. genesis 47:751–756, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
975.
Wei Zhu Yan Si Jun Xu Yu Lin Jing-Zi Wang Mengda Cao Shanwen Sun Qiang Ding Lingjun Zhu Ji-Fu Wei 《Journal of cellular and molecular medicine》2020,24(6):3521-3533
m6A modification is the most prevalent RNA modification in eukaryotes. As the critical N6-methyladenosine (m6A) methyltransferase, the roles of methyltransferase like 3 (METTL3) in colorectal cancer (CRC) are controversial. Here, we confirmed that METTL3, a critical m6A methyltransferase, could facilitate CRC progression in vitro and in vivo. Further, we found METTL3 promoted CRC cell proliferation by methylating the m6A site in 3′-untranslated region (UTR) of CCNE1 mRNA to stabilize it. Moreover, we found butyrate, a classical intestinal microbial metabolite, could down-regulate the expression of METTL3 and related cyclin E1 to inhibit CRC development. METTL3 promotes CRC proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner, representing a promising therapeutic strategy for the treatment of CRC. 相似文献
976.
Min Liao Su Shi Hailong Wu Qianqian Yang Zeng Zhu Jinjing Xiao Yong Huang Haiqun Cao 《Archives of insect biochemistry and physiology》2020,103(4):e21653
Terpinen-4-ol has high fumigating activity to stored-grain pests including Tribolium confusum. To understand the detoxification of terpinen-4-ol in insects, proteomic analysis was performed to identify related proteins and pathways in response to terpinen-4-ol fumigation in T. confusum. By using isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy, 4,618 proteins were obtained from T. confusum adults in the present study. Comparative proteomic analysis showed that 148 proteins were upregulated and 137 proteins were downregulated in beetles under the LC50 of terpinen-4-ol treatment for 24 hr. According to functional classifications, differentially expressed proteins (DEPs) were enriched in xenobiotic metabolism pathways. In the detoxification pathway, the levels of 25 cytochrome P450s, 5 glutathione S-transferases, and 2 uridine diphosphate (UDP)-glucuronosyltransferases were changed, most of which were upregulated in T. confusum exposed to terpinen-4-ol. The results indicated that terpinen-4-ol was potentially metabolized and detoxified by enzymes like P450s in T. confusum. 相似文献
977.
978.
Xianping Li Huimin Zhu Stefan Geisen Cline Bellard Feng Hu Huixin Li Xiaoyun Chen Manqiang Liu 《Global Change Biology》2020,26(2):919-930
Anthropogenic conversion of natural to agricultural land reduces aboveground biodiversity. Yet, the overall consequences of land‐use changes on belowground biodiversity at large scales remain insufficiently explored. Furthermore, the effects of conversion on different organism groups are usually determined at the taxonomic level, while an integrated investigation that includes functional and phylogenetic levels is rare and absent for belowground organisms. Here, we studied the Earth's most abundant metazoa—nematodes—to examine the effects of conversion from natural to agricultural habitats on soil biodiversity across a large spatial scale. To this aim, we investigated the diversity and composition of nematode communities at the taxonomic, functional, and phylogenetic level in 16 assemblage pairs (32 sites in total with 16 in each habitat type) in mainland China. While the overall alpha and beta diversity did not differ between natural and agricultural systems, all three alpha diversity facets decreased with latitude in natural habitats. Both alpha and beta diversity levels were driven by climatic differences in natural habitats, while none of the diversity levels changed in agricultural systems. This indicates that land conversion affects soil biodiversity in a geographically dependent manner and that agriculture could erase climatic constraints on soil biodiversity at such a scale. Additionally, the functional composition of nematode communities was more dissimilar in agricultural than in natural habitats, while the phylogenetic composition was more similar, indicating that changes among different biodiversity facets are asynchronous. Our study deepens the understanding of land‐use effects on soil nematode diversity across large spatial scales. Moreover, the detected asynchrony of taxonomic, functional, and phylogenetic diversity highlights the necessity to monitor multiple facets of soil biodiversity in ecological studies such as those investigating environmental changes. 相似文献
979.
Xi Xiang Hui Liu Liyun Wang Bihui Zhu Lang Ma Fangxue Du Ling Li Li Qiu 《Journal of cellular and molecular medicine》2020,24(18):10816-10829
Osteoarthritis (OA) is a common joint disease in the middle and old age group with obvious cartilage damage, and the regeneration of cartilage is the key to alleviating or treating OA. In stem cell therapy, bone marrow stem cell (BMSC) has been confirmed to have cartilage regeneration ability. However, the role of stem cells in promoting articular cartilage regeneration is severely limited by their low homing rate. Stromal cell‐derived factor‐1α (SDF‐1α) plays a vital role in MSC migration and involves activation, mobilization, homing and retention. So, we aim to develop SDF‐1α‐loaded microbubbles MB(SDF‐1α), and to verify the migration of BMSCs with the effect of ultrasound combined with MB(SDF‐1α) in vitro and in vivo. The characteristics of microbubbles and the content of SDF‐1α were examined in vitro. To evaluate the effect of ultrasound combined with chemotactic microbubbles on stem cell migration, BMSCs were injected locally and intravenously into the knee joint of the OA model, and the markers of BMSCs in the cartilage were detected. We successfully prepared MB(SDF‐1α) through covalent bonding with impressive SDF‐1α loading efficacy loading content. In vitro study, ultrasound combined with MB(SDF‐1α) group can promote more stem cell migration with highest migrating cell counts, good cell viability and highest CXCR4 expression. In vivo experiment, more BMSCs surface markers presented in the ultrasound combined with MB(SDF‐1α) group with or without exogenous BMSCs administration. Hence, ultrasound combined with MB(SDF‐1α) could promote the homing of BMSCs to cartilage and provide a novel promising therapeutic approach for OA. 相似文献
980.