首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   20篇
  2021年   2篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
81.
Live-imaging is an essential tool to visualize live cells and monitor their behaviors during development. This technology demands a variety of mouse reporter lines, each uniquely expressing a fluorescent protein. Here, we developed an R26R-RG reporter mouse line that conditionally and simultaneously expresses mCherry and EGFP in nuclei and plasma membranes, respectively, from the Rosa26 locus. The intensity and resolution of mCherry nuclear localization and EGFP membrane localization were demonstrated to be sufficient for live-imaging with embryos that express RG (mCherry and EGFP) ubiquitously and specifically in fetal Sertoli cells. The conditional R26R-RG reporter mouse line should be a useful tool for labeling nuclei and membranes simultaneously in distinct cell populations.  相似文献   
82.
83.
The demethoxycarbonyl reaction of pheophorbide a in plants and algae was investigated. Two types of enzyme that catalyze alternative reactions in the formation of pyropheophorbide a were found. One enzyme, designated `pheophorbidase (Phedase)', was purified nearly to homogeneity from cotyledons of radish (Raphanus sativus). This enzyme catalyzes the conversion of pheophorbide a to a precursor of pyropheophorbide a, C-132-carboxylpyropheophorbide a, by demethylation, and then the precursor is decarboxylated non-enzymatically to yield pyropheophorbide a. The activity of Phedase was inhibited by the reaction product, methanol. The other enzyme, termed `pheophorbide demethoxycarbonylase (PDC)', was highly purified from the Chl b-less mutant NL-105 of Chlamydomonas reinhardtii. This enzyme had produced no intermediate as shown in the Phedase reaction, indicating that it converts pheophorbide a directly into pyropheophorbide a, probably by nucleophilic reaction. Phedase and PDC consisted of both senescence-induced and constitutive enzymes. The molecular weight of both Phedases was 113 000 and of senescence-induced PDC was 170 000. The K m values against pheophorbide a for both Phedases were 14–15 μM and 283 μM for senescence-induced PDC. The activity of both Phedases was inhibited by the reaction product, methanol, whereas methanol had no specific effect on senescence-induced PDC. Phenylmethylsulfonic fluoride and N-ethylmaleimide inhibited the senescence-induced Phedase and PDC, respectively. Among the 23 species from 15 different families tested, Phedase activity was found in 10 species from three families. PDC activity was not detected in plants lacking Phedase activity, except for Chlamydomonas. Based on these findings, a likely conclusion is that at least two alternative pathways that are catalyzed by two different enzymes, Phedase and PDC, exist for the formation of pyropheophorbide a. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
84.
E-cadherin controls a wide array of cellular behaviors including cell-cell adhesion, differentiation and tissue development. Here we show that presenilin-1 (PS1), a protein involved in Alzheimer's disease, controls a gamma-secretase-like cleavage of E-cadherin. This cleavage is stimulated by apoptosis or calcium influx and occurs between human E-cadherin residues Leu731 and Arg732 at the membrane-cytoplasm interface. The PS1/gamma-secretase system cleaves both the full-length E-cadherin and a transmembrane C-terminal fragment, derived from a metalloproteinase cleavage after the E-cadherin ectodomain residue Pro700. The PS1/gamma-secretase cleavage dissociates E-cadherins, beta-catenin and alpha-catenin from the cytoskeleton, thus promoting disassembly of the E-cadherin-catenin adhesion complex. Furthermore, this cleavage releases the cytoplasmic E-cadherin to the cytosol and increases the levels of soluble beta- and alpha-catenins. Thus, the PS1/gamma-secretase system stimulates disassembly of the E-cadherin- catenin complex and increases the cytosolic pool of beta-catenin, a key regulator of the Wnt signaling pathway.  相似文献   
85.
Akt/protein kinase B promotes organ growth in transgenic mice   总被引:24,自引:0,他引:24       下载免费PDF全文
One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.  相似文献   
86.
Mutations affecting nerve attachment of Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Using a pan-neuronal GFP marker, a morphological screen was performed to detect Caenorhabditis elegans larval lethal mutants with severely disorganized major nerve cords. We recovered and characterized 21 mutants that displayed displacement or detachment of the ventral nerve cord from the body wall (Ven: ventral cord abnormal). Six mutations defined three novel genetic loci: ven-1, ven-2, and ven-3. Fifteen mutations proved to be alleles of previously identified muscle attachment/positioning genes, mup-4, mua-1, mua-5, and mua-6. All the mutants also displayed muscle attachment/positioning defects characteristic of mua/mup mutants. The pan-neuronal GFP marker also revealed that mutants of other mua/mup loci, such as mup-1, mup-2, and mua-2, exhibited the Ven defect. The hypodermis, the excretory canal, and the gonad were morphologically abnormal in some of the mutants. The pleiotropic nature of the defects indicates that ven and mua/mup genes are required generally for the maintenance of attachment of tissues to the body wall in C. elegans.  相似文献   
87.
A role for the PI3K/Akt/mTOR pathway in cardiac hypertrophy has been well documented. We reported that NFκB activation is needed for cardiac hypertrophy in vivo. To investigate whether both NFκB activation and PI3K/Akt/mTOR signaling participate in the development of cardiac hypertrophy, two models of cardiac hypertrophy, namely, induction in caAkt-transgenic mice and by aortic banding in mice, were employed. Rapamycin (2 mg/kg/daily), an inhibitor of the mammalian target of rapamycin, and the antioxidant pyrrolidine dithiocarbamate (PDTC; 120 mg/kg/daily), which can inhibit NFκB activation, were administered to caAkt mice at 8 weeks of age for 2 weeks. Both rapamycin and PDTC were also administered to the mice immediately after aortic banding for 2 weeks. Administration of either rapamycin or PDTC separately or together to caAkt mice reduced the ratio of heart weight/body weight by 21.54, 32.68, and 42.07% compared with untreated caAkt mice. PDTC administration significantly reduced cardiac NFκB activation by 46.67% and rapamycin significantly decreased the levels of p70S6K by 34.20% compared with untreated caAkt mice. Similar results were observed in aortic-banding-induced cardiac hypertrophy in mice. Our results suggest that both NFκB activation and the PI3K/Akt signaling pathway participate in the development of cardiac hypertrophy in vivo.  相似文献   
88.
We previously demonstrated that the hydrophobic clusters present in hen lysozyme under denaturing conditions were disrupted by the mutation of Trp62 to Gly (W62G). In order to examine the effects of the structure of the denatured state of W62G lysozyme on folding, we analyzed the early events in the folding of reduced W62G lysozyme in detail. From the exchange measurements of disulfide bonds using the variants containing a pair of cysteine residues (1SS), it was found that the formation of disulfide bond in the W62G1SS lysozyme was not accompanied by a prominent interaction between amino acid residues, indicating that the disruption of the hydrophobic core led to the random folding at the early stages in the process of folding of the reduced lysozyme. On the other hand, analyses of the oxidative-renaturation of reduced W62G lysozymes, as well as measurements of the extent of aggregation of the reduced and carboxy amido methylated W62G lysozyme, indicated that the formation of an aggregate is more prominent in the reduced W62G lysozyme than in the reduced wild-type lysozyme. Moreover, a lag phase was detected in the oxidative-renaturation of reduced W62G lysozyme, as based on observations of the recovery of activity. The simulation of the folding process indicated that intermediates were present at the early stages in the folding of the reduced W62G lysozyme. These results suggest that the presence of the intermediates was derived from the random folding at the early stages in the folding process of reduced W62G lysozyme due to the disruption of the structure of the denatured state. Folding thus appears to have been kinetically delayed by these processes, which then led to the significant aggregation of reduced lysozyme. Moreover, from the analysis of amyloid aggregation of the reduced lysozymes, it was suggested that the disruption of the residual structure in denatured state by W62G mutation deterred the formation of the amyloid fibrils of lysozyme.  相似文献   
89.
PriB is not only an essential protein necessary for the replication restart on the collapsed and disintegrated replication fork, but also an important protein for assembling of primosome onto PhiX174 genomic DNA during replication initiation. Here we report a 2.0-A-resolution X-ray structure of a biologically functional form of PriB from Escherichia coli. The crystal structure revealed that despite a low level of primary sequence identity, the PriB monomer, as well as the dimeric form, are structurally identical to the N-terminal DNA-binding domain of the single-stranded DNA-binding protein (SSB) from Escherichia coli, which possesses an oligonucleotides-binding-fold. The oligonucleotide-PriB complex model based on the oligonucleotides-SSB complex structure suggested that PriB had a DNA-binding pocket conserved in SSB from Escherichia coli and might bind to single-stranded DNA in the manner of SSB. Furthermore, surface plasmon resonance analysis and fluorescence measurements demonstrated that PriB binds single-stranded DNA with high affinity, by involving tryptophan residue. The significance of these results with respect to the functional role of PriB in the assembly of primosome is discussed.  相似文献   
90.
Although lipid-lowering therapy with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) decreases the progression of coronary artery and aortic valve calcification, the mechanism of action of these drugs to inhibit the calcification process remains unclear. In this study, we investigated the effect of statins such as cerivastatin and atorvastatin on vascular calcification by utilizing an in vitro model of inflammatory vascular calcification. Cerivastatin and atorvastatin dose-dependently inhibited in vitro calcification of human vascular smooth muscle cells (HVSMCs) induced by the following inflammatory mediators (IM): interferon-gamma, 1alpha,25-dihydroxyvitamin D3, tumor necrosis factor-alpha, and oncostatin M. These statins also depressed expression of alkaline phosphatase (ALP) in HVSMCs induced by these factors. Mevalonate and geranylgeranylpyrophosphate reversed the inhibitory effect of cerivastatin on ALP expression in HVSMCs, while farnesylpyrophosphate showed no effect on the ALP activities inhibited by this drug, suggesting that inhibition of Rho and its downstream target, Rho kinase may mediate the inhibitory effect of cerivastatin. Cerivastatin prevented RhoA activation in HVSMCs induced by the IM. A specific inhibitor of Rho kinase (Y-27632) inhibited in vitro calcification and induction of ALP in HVSMCs. These findings provide a possible mechanism of statins to prevent the progression of calcification in inflammatory vascular diseases such as atherosclerosis and cardiac valvular calcification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号