首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3651篇
  免费   232篇
  2022年   14篇
  2021年   42篇
  2020年   19篇
  2019年   31篇
  2018年   46篇
  2017年   45篇
  2016年   69篇
  2015年   117篇
  2014年   143篇
  2013年   209篇
  2012年   229篇
  2011年   239篇
  2010年   143篇
  2009年   155篇
  2008年   232篇
  2007年   232篇
  2006年   191篇
  2005年   196篇
  2004年   212篇
  2003年   201篇
  2002年   199篇
  2001年   85篇
  2000年   72篇
  1999年   77篇
  1998年   30篇
  1997年   34篇
  1996年   27篇
  1995年   24篇
  1994年   17篇
  1993年   22篇
  1992年   58篇
  1991年   32篇
  1990年   31篇
  1989年   32篇
  1988年   33篇
  1987年   25篇
  1986年   30篇
  1985年   26篇
  1984年   20篇
  1983年   22篇
  1982年   12篇
  1981年   15篇
  1980年   18篇
  1975年   17篇
  1974年   13篇
  1973年   11篇
  1971年   12篇
  1970年   16篇
  1967年   10篇
  1966年   13篇
排序方式: 共有3883条查询结果,搜索用时 234 毫秒
971.
Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The Ras/Raf-1/MEK/ERK pathway is constitutively activated in Bcr-Abl-transformed cells, and Ras activity enhances the oncogenic ability of Bcr-Abl. However, the mechanism by which Bcr-Abl activates the Ras pathway is not completely understood. Raf kinase inhibitor protein (RKIP) inhibits activation of MEK by Raf-1 and its downstream signal transduction, resulting in blocking the MAP kinase pathway. In the present study, we found that RKIP was depleted in CML cells. We investigated the interaction between RKIP and Bcr-Abl in CML cell lines and Bcr-Abl+ progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of RKIP and reduced the pERK1/2 status, resulting in inhibited proliferation of CML cells. Moreover, RKIP up-regulated cell cycle regulator FoxM1 expression, resulting in G1 arrest via p27Kip1 and p21Cip1 accumulation. In colony-forming unit granulocyte, erythroid, macrophage, megakaryocyte, colony-forming unit-granulocyte macrophage, and burst-forming unit erythroid, treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced RKIP and reduced FoxM1 expressions, and inhibited colony formation of Bcr-Abl+ progenitor cells, whereas depletion of RKIP weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl+ progenitor cells. Thus, Bcr-Abl represses the expression of RKIP, continuously activates pERK1/2, and suppresses FoxM1 expression, resulting in proliferation of CML cells.  相似文献   
972.
HIV-1 Nef triggers down-regulation of cell-surface MHC-I by assembling a Src family kinase (SFK)-ZAP-70/Syk-PI3K cascade. Here, we report that chemical disruption of the Nef-SFK interaction with the small molecule inhibitor 2c blocks assembly of the multi-kinase complex and represses HIV-1–mediated MHC-I down-regulation in primary CD4+ T-cells. 2c did not interfere with the PACS-2–dependent trafficking of Nef required for the Nef-SFK interaction or the AP-1 and PACS-1–dependent sequestering of internalized MHC-I, suggesting the inhibitor specifically interfered with the Nef-SFK interaction required for triggering MHC-I down-regulation. Transport studies revealed Nef directs a highly regulated program to down-regulate MHC-I in primary CD4+ T-cells. During the first two days after infection, Nef assembles the 2c-sensitive multi-kinase complex to trigger down-regulation of cell-surface MHC-I. By three days postinfection Nef switches to a stoichiometric mode that prevents surface delivery of newly synthesized MHC-I. Pharmacologic inhibition of the multi-kinase cascade prevents the Nef-dependent block in MHC-I transport, suggesting the signaling and stoichiometric modes are causally linked. Together, these studies resolve the seemingly controversial models that describe Nef-induced MHC-I down-regulation and provide new insights into the mechanism of Nef action.  相似文献   
973.
974.
975.
Highlights? A short-lived population of kinetochore-derived microtubules (MTs) has distal plus ends ? These MTs are generated in early mitosis and regulated by Stu2 ? They interact with spindle pole-derived MTs before kinetochore attachment ? Once kinetochores attach to spindle-pole MTs, the short-lived MT population disappears  相似文献   
976.
Highly pathogenic H5N1 influenza A viruses have spread across Asia, Europe, and Africa. More than 500 cases of H5N1 virus infection in humans, with a high lethality rate, have been reported. To understand the molecular basis for the high virulence of H5N1 viruses in mammals, we tested the virulence in ferrets of several H5N1 viruses isolated from humans and found A/Vietnam/UT3062/04 (UT3062) to be the most virulent and A/Vietnam/UT3028/03 (UT3028) to be avirulent in this animal model. We then generated a series of reassortant viruses between the two viruses and assessed their virulence in ferrets. All of the viruses that possessed both the UT3062 hemagglutinin (HA) and nonstructural protein (NS) genes were highly virulent. By contrast, all those possessing the UT3028 HA or NS genes were attenuated in ferrets. These results demonstrate that the HA and NS genes are responsible for the difference in virulence in ferrets between the two viruses. Amino acid differences were identified at position 134 of HA, at positions 200 and 205 of NS1, and at positions 47 and 51 of NS2. We found that the residue at position 134 of HA alters the receptor-binding property of the virus, as measured by viral elution from erythrocytes. Further, both of the residues at positions 200 and 205 of NS1 contributed to enhanced type I interferon (IFN) antagonistic activity. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.  相似文献   
977.
978.
Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey(2)/+) rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI). In the present study, we further examined behaviors of rSey(2)/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal) in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV) in rSey(2)+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey(2)/+ rats likely have some phenotypic components of autism.  相似文献   
979.

Background

Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling.

Methodology/Principal Findings

We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells.

Conclusions/Significance

The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.  相似文献   
980.

Background

Gene transduction has been considered advantageous for the sustained delivery of proteins to specific target tissues. However, in the case of hard tissues, such as bone, local gene delivery remains problematic owing to anatomical accessibility limitations of the target sites.

Methodology/Principal Findings

Here, we evaluated the feasibility of exogenous gene transduction in the interior of bone via axonal transport following intramuscular administration of a nonviral vector. A high expression level of the transduced gene was achieved in the tibia ipsilateral to the injected tibialis anterior muscle, as well as in the ipsilateral sciatic nerve and dorsal root ganglia. In sciatic transection rats, the gene expression level was significantly lowered in bone.

Conclusions/Significance

These results suggest that axonal transport is critical for gene transduction. Our study may provide a basis for developing therapeutic methods for efficient gene delivery into hard tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号