首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3796篇
  免费   235篇
  2022年   31篇
  2021年   39篇
  2020年   18篇
  2019年   38篇
  2018年   55篇
  2017年   47篇
  2016年   66篇
  2015年   134篇
  2014年   145篇
  2013年   228篇
  2012年   236篇
  2011年   241篇
  2010年   142篇
  2009年   150篇
  2008年   220篇
  2007年   213篇
  2006年   202篇
  2005年   211篇
  2004年   190篇
  2003年   205篇
  2002年   164篇
  2001年   89篇
  2000年   94篇
  1999年   77篇
  1998年   48篇
  1997年   44篇
  1996年   35篇
  1995年   47篇
  1994年   31篇
  1993年   27篇
  1992年   50篇
  1991年   53篇
  1990年   42篇
  1989年   37篇
  1988年   34篇
  1987年   28篇
  1986年   34篇
  1985年   24篇
  1984年   23篇
  1983年   25篇
  1982年   11篇
  1981年   17篇
  1980年   13篇
  1979年   15篇
  1978年   13篇
  1976年   17篇
  1975年   14篇
  1974年   15篇
  1970年   11篇
  1968年   15篇
排序方式: 共有4031条查询结果,搜索用时 46 毫秒
991.
To clarify the wood properties and chemical composition of branches of Viburnum odoratissimum produced by unusual eccentric growth, we investigated growth strain (GS), basic density (D b), microfibril angle (MFA), elastic moduli (E L and E L/D b), creep deformation, cellulose crystalline features, and lignin structure in upper and lower sides of the branches, and considered the correlations among these factors. In most measuring positions, the distribution of GS showed that higher tensile GS was in the upper side and compressive GS was in the lower side of the branch, which combines GS features of reaction wood. However, the generation of GS in the lower side was different from that in compression wood, because E L/D b and MFA had a negative correlation. The creep compliance curves show that the upper-side wood had low rigidity and high viscosity, whereas the lower-side wood had large rigidity and low viscosity. Relative creep had a negative relation with MFA in the upper side, which is unusual. The cellulose crystalline features showed no obvious difference between both sides of the branch; however, the lignin with less β-O-4 proportion and less S units but more G units seemed to exist in the lower side because of a decreased syringyl/guaiacyl (S/G) molar ratio. This suggests that cell wall could be reinforced by lignin resulting in lower viscosity in the lower side of the branch. Additionally, the S/G ratio showed a relatively high correlation with GS in the lower side. These results suggest that lignin structure plays an important role in adapting to environmental changes during eccentric growth for V. odoratissimum.  相似文献   
992.
993.
Cholesterol side chain cleavage cytochrome P450 (P450scc, Cyp11a) is responsible for the first step in steroidogenesis, catalyzing the conversion of cholesterol to prognenolone. To investigate the differentiation of steroid‐producing cells and the function of sex steroids during gonadal differentiation in the teleost fish, medaka (Oryzias latipes), we isolated the full length cDNA of medaka P450scc and analyzed the expression pattern of P450scc mRNA during gonadal development using in situ hybridization. At hatching, and just after the initiation of morphological sex differentiation, we did not detect any P450scc expression in both sexes. In male gonads, expression of P450scc was detected in the interstitial somatic cells 15 days after hatching following the formation of the seminiferous tubule precursor, and was maintained in the interstitial somatic cells throughout testicular development. In the female gonad, expression of P450scc was initially detected in interstitial somatic cells 5 days after hatching. Subsequently, the expression of P450scc was continuously detected in the interstitial somatic cells of the developing ovary. This expression pattern of P450scc differed from that of female specific steroidogenic enzyme P450arom. Both P450scc and P450arom expressing cells, only P450scc expressing cells, and only P450arom expressing cells were observed. Our results suggest that expression of steroidogenic enzymes is regulated by various mechanisms during ovarian development.  相似文献   
994.
Planar cell polarity (PCP) signaling polarises cells along tissue axes. Although pathways involved are becoming better understood, outstanding issues include; (i) existence/identity of cues that orchestrate global polarisation in tissues, and (ii) the generality of the link between polarisation of primary cilia and asymmetric localisation of PCP proteins. Mammalian lenses are mainly comprised of epithelial-derived fiber cells. Concentrically arranged fibers are precisely aligned as they elongate along the anterior-posterior axis and orientate towards lens poles where they meet fibers from other segments to form characteristic sutures. We show that lens exhibits PCP, with each fiber cell having an apically situated cilium and in most cases this is polarised towards the anterior pole. Frizzled and other PCP proteins are also asymmetrically localised along the equatorial-anterior axis. Mutations in core PCP genes Van Gogh-like 2 and Celsr1 perturb oriented fiber alignment and suture formation. Suppression of the PCP pathway by overexpressing Sfrp2 shows that whilst local groups of fibers are often similarly oriented, they lack global orientation; consequently when local groups of fibers with different orientations meet they form multiple, small, ectopic suture-like configurations. This indicates that this extracellular inhibitor disrupts a global polarising signal that utilises a PCP-mediated mechanism to coordinate the global alignment and orientation of fibers to lens poles.  相似文献   
995.
996.
Redox-induced protonation state changes of the Glu residue in the multicopper oxidases, CueO and bilirubin oxidase (BO), were studied by attenuated total reflectance-Fourier transform infrared spectroscopy. By monitoring IR bands of the carboxylic acid CO stretch in the wild-type and Glu-to-Gln mutant enzymes the Glu506 of CueO (Glu463 of BO) was found to be unprotonated in the oxidised and protonated in the reduced forms. The results provided direct evidence for proton uptake by the Glu, suggesting it plays a key role in the proton donation to the activated oxygen species in the catalytic cycle.  相似文献   
997.
998.
Infection of erythroid cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator, erythropoietin (Epo), because of interaction of the viral envelope protein with the erythropoietin receptor and a short form of the receptor tyrosine kinase Stk (sf-Stk), leading to constitutive activation of several signal transduction pathways. Our previous in vitro studies showed that phosphatidylinositol 3-kinase (PI3-kinase) is activated in SFFV-infected cells and is important in mediating the biological effects of the virus. To determine the role of PI3-kinase in SFFV-induced disease, mice deficient in the p85α regulatory subunit of class IA PI3-kinase were inoculated with different strains of SFFV. We observed that p85α status determined the extent of erythroid hyperplasia induced by the sf-Stk-dependent viruses SFFV-P (polycythemia-inducing strain of SFFV) and SFFV-A (anemia-inducing strain of SFFV) but not by the sf-Stk-independent SFFV variant BB6. Our data also indicate that p85α status determines the response of mice to stress erythropoiesis, consistent with a previous report showing that SFFV uses a stress erythropoiesis pathway to induce erythroleukemia. We further showed that sf-Stk interacts with p85α and that this interaction depends upon sf-Stk kinase activity and tyrosine 436 in the multifunctional docking site. Pharmacological inhibition of PI3-kinase blocked proliferation of primary erythroleukemia cells from SFFV-infected mice and the erythroleukemia cell lines derived from them. These results indicate that p85α may regulate sf-Stk-dependent erythroid proliferation induced by SFFV as well as stress-induced erythroid hyperplasia.The Friend spleen focus-forming virus (SFFV) is a highly pathogenic retrovirus that induces rapid erythroblastosis in susceptible strains of mice (for a review, see reference 42). Friend SFFV is a replication-defective virus with deletions in its env gene, giving rise to a unique glycoprotein, SFFV gp55. This unique glycoprotein confers pathogenicity to the virus; a vector encoding SFFV gp55 alone is sufficient to induce erythroblastosis in susceptible strains of mice (49). The Fv-2 gene encodes one of the key susceptibility factors for SFFV-induced erythroid disease (18, 37), as follows: the receptor tyrosine kinase Stk/RON, a member of the Met family of receptor tyrosine kinases (11-12). Susceptibility to SFFV-induced disease is associated with expression of a short form of the receptor tyrosine kinase Stk, termed sf-Stk, that is transcribed from an internal promoter within the Stk gene of Fv-2-susceptible (Fv-2ss) mice but not Fv-2-resistant (Fv-2rr) mice (37) and is abundantly expressed in erythroid cells (11). Infection of erythroid cells with the polycythemia-inducing strain of SFFV (SFFV-P) induces erythropoietin (Epo)-independent proliferation and differentiation, whereas erythroid cells infected with the anemia-inducing strain of SFFV (SFFV-A) proliferate in the absence of Epo but still require Epo for differentiation (42). Previous studies demonstrated that this Epo-independent erythroblastosis is due to the cell surface interaction of the SFFV envelope protein with the Epo receptor (EpoR) and sf-Stk (31). While interaction with the EpoR appears to be responsible mainly for the induction of Epo-independent differentiation (52), Epo-independent erythroid cell proliferation depends upon activation of sf-Stk. We recently demonstrated that sf-Stk covalently interacts with SFFV-P gp55 in hematopoietic cells that express the EpoR and that this interaction induces sf-Stk activation (31). Furthermore, exogenous expression of sf-Stk, but not a kinase-inactive mutant of sf-Stk, in bone marrow cells from sf-Stk null mice can restore Epo-independent erythroid colony formation in response to SFFV infection (5, 41). Thus, the SFFV envelope glycoprotein induces Epo-independent proliferation of erythroid cells mainly by activating sf-Stk. While sf-Stk is a key susceptibility factor for erythroblastosis induced by both SFFV-P and SFFV-A (18), it is not required for the induction of erythroblastosis by the SFFV mutant BB6, which encodes an envelope glycoprotein, gp42, that is deleted in the membrane-proximal extracellular domain (19) and does not induce sf-Stk activation (31). gp42 of SFFV-BB6 appears to exert its biological effects on erythroid cells by efficiently interacting with the EpoR (9). Compared with wild-type SFFV, SFFV-BB6 causes a relatively indolent and slowly developing disease in mice (19).A number of signaling pathways normally activated in erythroid cells after erythropoietin (Epo) binds to its cell surface receptor (40) are constitutively activated in erythroid cells infected with SFFV. These include JAK/STAT, Ras/Raf/mitogen-activated protein kinase (MAPK), Jun N-terminal kinase, and the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathways (24, 25, 28-30, 32). SFFV gp55 is thought to activate these pathways by interacting with either the EpoR or sf-Stk (17, 31, 43). In several in vitro systems, class IA PI3-kinase has been shown to be activated by Epo through the EpoR (8, 20, 21) or by SFFV through sf-Stk (5, 14). We and others have shown that the PI3-kinase pathway is important for the induction of Epo independence by SFFV (5, 29). The class IA subclass of PI3-kinase is a heterodimer comprising the p110 (α, β, δ) catalytic unit and one of five regulatory subunits (85α, p55α, p50α, 85β, and 55γ) (15). The first 3 regulatory subunits are all splice variants of the same gene (pik3r1). Deletion of pik3r1, which encodes p85α, p55α, and p50α, is lethal (6, 7), and these regulatory subunits of PI3-kinase are required for normal murine fetal erythropoiesis in mice (10).To determine the role of p85α in SFFV-induced erythroleukemia, we used a distinct nonlethal pik3r1 knockout mouse which lacks only the p85α regulatory subunit of PI3-kinase (45, 47), allowing the study of SFFV-induced erythroleukemia in adult mice. Our results indicate that p85α regulates SFFV-induced erythroid hyperplasia induced in vivo by sf-Stk-dependent, but not sf-Stk-independent, isolates of the virus as well as stress-induced erythropoiesis and suggest that this regulation may occur through the interaction of sf-Stk with p85α.  相似文献   
999.
1000.
In the resting oxidized state (the fully oxidized “as-isolated” state) of cytochrome c oxidase (CcO) preparation, a resonance Raman band is observed at 755 cm-1 upon 647.1 nm excitation in resonance with an absorption band at 655 nm. Addition of cyanide eliminates the Raman band concomitant with loss of the absorption band at 655 nm. These results strongly suggest that the Raman band at 755 cm-1 originates from the O−O stretching mode of the bridging peroxide (Fe−O-−O-−Cu) in the O2 reduction site of the fully oxidized “as-isolated” CcO. Although the peroxide bridged structure has been proposed on the basis of X-ray crystallography and reductive titration experiments, the present vibrational spectroscopic analyses reveal conclusively the chemical nature of the bridging ligand at the O2 reduction site of the fully oxidized “as-isolated” bovine heart CcO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号