首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3706篇
  免费   279篇
  2022年   16篇
  2021年   38篇
  2020年   22篇
  2019年   38篇
  2018年   69篇
  2017年   53篇
  2016年   65篇
  2015年   116篇
  2014年   148篇
  2013年   231篇
  2012年   222篇
  2011年   223篇
  2010年   139篇
  2009年   154篇
  2008年   222篇
  2007年   239篇
  2006年   211篇
  2005年   225篇
  2004年   224篇
  2003年   193篇
  2002年   157篇
  2001年   75篇
  2000年   81篇
  1999年   86篇
  1998年   45篇
  1997年   39篇
  1996年   33篇
  1995年   34篇
  1994年   24篇
  1993年   28篇
  1992年   47篇
  1991年   40篇
  1990年   45篇
  1989年   35篇
  1988年   29篇
  1987年   34篇
  1986年   33篇
  1985年   28篇
  1984年   21篇
  1983年   27篇
  1982年   16篇
  1981年   15篇
  1980年   19篇
  1979年   21篇
  1978年   11篇
  1977年   14篇
  1974年   9篇
  1973年   14篇
  1972年   11篇
  1968年   9篇
排序方式: 共有3985条查询结果,搜索用时 15 毫秒
991.
In the resting oxidized state (the fully oxidized “as-isolated” state) of cytochrome c oxidase (CcO) preparation, a resonance Raman band is observed at 755 cm-1 upon 647.1 nm excitation in resonance with an absorption band at 655 nm. Addition of cyanide eliminates the Raman band concomitant with loss of the absorption band at 655 nm. These results strongly suggest that the Raman band at 755 cm-1 originates from the O−O stretching mode of the bridging peroxide (Fe−O-−O-−Cu) in the O2 reduction site of the fully oxidized “as-isolated” CcO. Although the peroxide bridged structure has been proposed on the basis of X-ray crystallography and reductive titration experiments, the present vibrational spectroscopic analyses reveal conclusively the chemical nature of the bridging ligand at the O2 reduction site of the fully oxidized “as-isolated” bovine heart CcO.  相似文献   
992.
In contrast to most denitrifiers studied so far, Pseudomonas stutzeri TR2 produces low levels of nitrous oxide (N2O) even under aerobic conditions. We compared the denitrification activity of strain TR2 with those of various denitrifiers in an artificial medium that was derived from piggery wastewater. Strain TR2 exhibited strong denitrification activity and produced little N2O under all conditions tested. Its growth rate under denitrifying conditions was near comparable to that under aerobic conditions, showing a sharp contrast to the lower growth rates of other denitrifiers under denitrifying conditions. Strain TR2 was tolerant to toxic nitrite, even utilizing it as a good denitrification substrate. When both nitrite and N2O were present, strain TR2 reduced N2O in preference to nitrite as the denitrification substrate. This bacterial strain was readily able to adapt to denitrifying conditions by expressing the denitrification genes for cytochrome cd1 nitrite reductase (NiR) (nirS) and nitrous oxide reductase (NoS) (nosZ). Interestingly, nosZ was constitutively expressed even under nondenitrifying, aerobic conditions, consistent with our finding that strain TR2 preferred N2O to nitrite. These properties of strain TR2 concerning denitrification are in sharp contrast to those of well-characterized denitrifiers. These results demonstrate that some bacterial species, such as strain TR2, have adopted a strategy for survival by preferring denitrification to oxygen respiration. The bacterium was also shown to contain the potential to reduce N2O emissions when applied to sewage disposal fields.Wastewater treatment processes produce one of the major greenhouse effect gases, nitrous oxide (N2O) (7, 25, 30). The global warming potential of N2O relative to that of carbon dioxide (CO2) is 298 for a 100-year time horizon, and its concentration in the atmosphere continues to increase by about 0.26% per year (9). Nitrogen removal in wastewater treatment plants is essentially based on the activities of nitrifying and denitrifying microorganisms, both of which are inhabitants of activated sludge. Nitrifying bacteria aerobically oxidize ammonium to nitrite (NO2) and nitrate (NO3), which are then reduced anaerobically by denitrifying bacteria to gaseous nitrogen forms, such as N2O and dinitrogen (N2). It has long been known that N2O can be produced during both nitrification and denitrification processes of wastewater treatment (3, 19, 23), but the cause of N2O emission during the nitrification process was not clear. We recently showed, however, using activated sludge grown under conditions that mimicked a piggery wastewater disposal, that N2O emission during the nitrification process depends on denitrification by ammonia-oxidizing bacteria (Nitrosomonas) (18). On the other hand, it is believed that denitrifying bacteria produce N2O as a by-product when anaerobiosis is insufficient during the denitrification process, because N2O reductase is the enzyme that is most sensitive to oxygen (6). Piggery wastewater, in particular, contains a high concentration of ammonia, and N2O emission tends to take place during the nitrogen removal process (5, 10). Experiments on the removal of ammonia and organic carbon by the aerobic denitrifier Pseudomonas stutzeri SU2 (24) and the heterotrophic nitrifier-aerobic denitrifier Alcaligenes faecalis no. 4 (16, 17) have been reported as examples of bioaugmentation in piggery wastewater treatment. Reduction of N2O emissions from pig manure compost by addition of nitrite-oxidizing bacteria has also been reported (11). However, there have been no reports of methods for reducing N2O emissions by bioaugmentation using aerobic denitrifying bacteria.Takaya et al. isolated the aerobic denitrifying bacterium Pseudomonas stutzeri TR2 (26). The denitrification activity of strain TR2 was monitored in batch and continuous cultures, using denitrification and artificial wastewater media, and the strain was found to keep a distinct activity (producing N2 from NO3) and to produce a very low level of N2O at a dissolved oxygen (O2) concentration of 1.25 mg liter−1. Therefore, strain TR2 should be useful in the future for reducing N2O emissions from wastewater treatment plants by bioaugmentation. To investigate the feasibility of using strain TR2 for future application to wastewater treatment processes, we examined its denitrification activity, N2O production, growth rate, and expression of denitrifying genes in batch cultures, using a medium that mimics the composition found in nitrogen removal wastewater plants. Comparison of the properties of strain TR2 with those of well-characterized denitrifying bacteria revealed characteristics of the strain that favor denitrification, although it can also respire oxygen.  相似文献   
993.
We engineered a chimeric enzyme (AwFaeA-CBM42) comprising of type-A feruloyl esterase from Aspergillus awamori (AwFaeA) and family 42 carbohydrate-binding module (AkCBM42) from glycoside hydrolase family 54 α-l-arabinofuranosidase of Aspergillus kawachii. The chimeric enzyme was successfully produced in Pichia pastoris and accumulated in the culture broth. The purified chimeric enzyme had an apparent relative molecular mass (M r) of 53,000. The chimeric enzyme binds to arabinoxylan; this indicates that the AkCBM42 in AwFaeA-CBM42 binds to arabinofuranose side chain moiety of arabinoxylan. The thermostability of the chimeric enzyme was greater than that of AwFaeA. No significant difference of the specific activity toward methyl ferulate was observed between the AwFaeA and chimeric enzyme, but the release of ferulic acid from insoluble arabinoxylan by the chimeric enzyme was approximately 4-fold higher than that achieved by AwFaeA alone. In addition, the chimeric enzyme and xylanase acted synergistically for the degradation of arabinoxylan. In conclusion, the findings of our study demonstrated that the components of the AwFaeA-CBM42 chimeric enzyme act synergistically to bring about the degradation of complex substrates and that the family 42 carbohydrate-binding module has potential for application in the degradation of polysaccharides.  相似文献   
994.
The blood–brain barrier (BBB) is formed by brain capillary endothelial cells, astrocytes, pericytes, microglia, and neurons. BBB disruption under pathological conditions such as neurodegenerative disease and inflammation is observed in parallel with microglial activation. To test whether activation of microglia is linked to BBB dysfunction, we evaluated the effect of lipopolysaccharide (LPS) on BBB functions in an in vitro co-culture system with rat brain microvascular endothelial cells (RBEC) and microglia. When LPS was added for 6 h to the abluminal side of RBEC/microglia co-culture at a concentration showing no effects on the RBEC monolayer, transendothelial electrical resistance was decreased and permeability to sodium-fluorescein was increased in RBEC. Immunofluorescence staining for tight junction proteins demonstrated that zonula occludens-1-, claudin-5-, and occludin-like immunoreactivities at the intercellular borders of RBEC were fragmented in the presence of LPS-activated microglia. These functional changes induced by LPS-activated microglia were blocked by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, diphenyleneiodonium chloride. The present findings suggest that LPS activates microglia to induce dysfunction of the BBB by producing reactive oxygen species through NADPH oxidase.  相似文献   
995.
Chaetocin, a natural product isolated from Chaetomium species fungi, was reported to have various biological activities, including antitumor and antifungal activities. Recently, we reported the first total synthesis of chaetocin and its derivatives. Here, we examined the cell-death-inducing activity of these compounds in human leukemia HL-60 cells. The unnatural enantiomer of chaetocin (ent-chaetocin) was more potent than chaetocin, and was found to induce apoptosis through the caspase-8/caspase-3 activation pathway.  相似文献   
996.
In this Letter, we demonstrate the formation of m5dC from dC or in DNA by dimethylsulfoxide (DMSO) and methionine sulfoxide (MetO), under physiological conditions in the presence of the Fenton reagent in vitro. DMSO reportedly affects the cellular epigenetic profile, and enhances the metastatic potential of cultured epithelial cells. The methionine sulfoxide reductase (Msr) gene was suggested to be a metastatis suppressor gene, and the accumulation of MetO in proteins may induce metastatic cancer. Our findings are compatible with these biological data and support the hypothesis that chemical cytosine methylation via methyl radicals is one of the mechanisms of DNA hypermethylation during carcinogenesis. In addition to m5dC, the formation of 8-methyldeoxyguanosine (m8dG) was also detected in DNA under the same reaction conditions. The m8dG level in human DNA may be a useful indicator of DNA methylation by radical mechanisms.  相似文献   
997.
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.  相似文献   
998.

Background

The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity.

Results

We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1.

Conclusions

The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.  相似文献   
999.
Neurotransmitter release is triggered by Ca(2+) binding to a low affinity Ca(2+) sensor, mostly synaptotagmin-1, which catalyzes SNARE-mediated synaptic vesicle fusion. Tomosyn negatively regulates Ca(2+)-dependent neurotransmitter release by sequestering target SNAREs through the C-terminal VAMP-like domain. In addition to the C terminus, the N-terminal WD40 repeats of tomosyn also have potent inhibitory activity toward Ca(2+)-dependent neurotransmitter release, although the molecular mechanism underlying this effect remains elusive. Here, we show that through its N-terminal WD40 repeats tomosyn directly binds to synaptotagmin-1 in a Ca(2+)-dependent manner. The N-terminal WD40 repeats impaired the activities of synaptotagmin-1 to promote SNARE complex-mediated membrane fusion and to bend the lipid bilayers. Decreased acetylcholine release from N-terminal WD40 repeat-microinjected superior cervical ganglion neurons was relieved by microinjection of the cytoplasmic domain of synaptotagmin-1. These results indicate that, upon direct binding, the N-terminal WD40 repeats negatively regulate the synaptotagmin-1-mediated step of Ca(2+)-dependent neurotransmitter release. Furthermore, we show that synaptotagmin-1 binding enhances the target SNARE-sequestering activity of tomosyn. These results suggest that the interplay between tomosyn and synaptotagmin-1 underlies inhibitory control of Ca(2+)-dependent neurotransmitter release.  相似文献   
1000.
In this study, we analyzed the effects of tensile mechanical stress on the gene expression profile of in vitro-maintained human periodontal ligament (PDL) cells. A DNA chip analysis identified 17 up-regulated genes in human PDL cells under the mechanical stress, including HOMER1 (homer homolog 1) and GRIN3A (glutamate receptor ionotropic N-methyl-d-aspartate 3A), which are related to glutamate signaling. RT-PCR and real-time PCR analyses revealed that human PDL cells constitutively expressed glutamate signaling-associated genes and that mechanical stress increased the expression of these mRNAs, leading to release of glutamate from human PDL cells and intracellular glutamate signal transduction. Interestingly, exogenous glutamate increased the mRNAs of cytodifferentiation and mineralization-related genes as well as the ALP (alkaline phosphatase) activities during the cytodifferentiation of the PDL cells. On the other hand, the glutamate signaling inhibitors riluzole and (+)-MK801 maleate suppressed the alkaline phosphatase activities and mineralized nodule formation during the cytodifferentiation and mineralization. Riluzole inhibited the mechanical stress-induced glutamate signaling-associated gene expressions in human PDL cells. Moreover, in situ hybridization analyses showed up-regulation of glutamate signaling-associated gene expressions at tension sites in the PDL under orthodontic tooth movement in a mouse model. The present data demonstrate that the glutamate signaling induced by mechanical stress positively regulates the cytodifferentiation and mineralization of PDL cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号