首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4567篇
  免费   286篇
  国内免费   2篇
  4855篇
  2023年   13篇
  2022年   29篇
  2021年   56篇
  2020年   24篇
  2019年   38篇
  2018年   56篇
  2017年   51篇
  2016年   87篇
  2015年   144篇
  2014年   172篇
  2013年   240篇
  2012年   267篇
  2011年   263篇
  2010年   175篇
  2009年   181篇
  2008年   297篇
  2007年   284篇
  2006年   229篇
  2005年   256篇
  2004年   270篇
  2003年   232篇
  2002年   215篇
  2001年   120篇
  2000年   108篇
  1999年   76篇
  1998年   49篇
  1997年   43篇
  1996年   32篇
  1995年   42篇
  1994年   23篇
  1993年   22篇
  1992年   66篇
  1991年   65篇
  1990年   48篇
  1989年   81篇
  1988年   60篇
  1987年   45篇
  1986年   48篇
  1985年   54篇
  1984年   27篇
  1983年   34篇
  1982年   28篇
  1981年   12篇
  1980年   16篇
  1979年   20篇
  1978年   15篇
  1977年   17篇
  1975年   12篇
  1973年   16篇
  1972年   11篇
排序方式: 共有4855条查询结果,搜索用时 15 毫秒
101.
Influenza virus receptors in the human airway   总被引:2,自引:0,他引:2  
Shinya K  Kawaoka Y 《Uirusu》2006,56(1):85-89
Avian influenza A (H5N1) virus infections have resulted in more than 100 human deaths; yet, human-to-human transmission is rare. We demonstrated that the epithelial cells in the upper respiratory tract of humans mainly possess sialic acid linked to galactose by alpha 2,6 linkages (SA alpha 2,6Gal), a molecule preferentially recognized by human viruses. However, many cells in the respiratory bronchioles and alveoli possess SA alpha 2,3Gal, which is preferentially recognized by avian viruses. These facts are consistent with the observation that H5N1 viruses can be directly transmitted from birds to humans and cause serious lower respiratory tract damage in humans. Furthermore, this anatomical difference in receptor prevalence may explain why the spread of H5N1 viruses among humans is limited. However, since some H5N1 viruses isolated from humans recognize human virus receptors, additional changes must be required for these viruses to acquire the ability for efficient human-to-human transmission.  相似文献   
102.
The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.  相似文献   
103.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   
104.
Fabry disease is a lysosomal storage disorder caused by the deficiency of alpha-Gal A (alpha-galactosidase A) activity. In order to understand the molecular mechanism underlying alpha-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal K(m) and V(max) values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) alpha-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q alpha-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant alpha-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant alpha-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations.  相似文献   
105.
Isolation and characterization of cDNA clones for plant cyclins.   总被引:20,自引:2,他引:20       下载免费PDF全文
S Hata  H Kouchi  I Suzuka    T Ishii 《The EMBO journal》1991,10(9):2681-2688
We have isolated and sequenced a carrot cDNA and two soybean cDNAs encoding mitotic cyclin homologs. The soybean clones were derived from nearly identical cognate genes. The carrot cyclin and soybean cyclins were slightly more similar to A-type and B-type cyclins thus far defined, respectively. However, they had divergent amino acid sequences in the portion that is most highly conserved in known cyclins and we could not easily include them in either of the phylogenetic types. Since the homology between carrot and soybean cyclins was low, each of them might define a novel and distinct type. The mRNA of carrot cyclin, 1.5 kb in length, was expressed concomitant with somatic embryogenesis of cultured cells. Expression of soybean cyclin mRNAs, 1.6 kb in length, was localized in proliferating parts of seedlings. As in the case of cyclin genes of marine invertebrates, microinjection of a synthetic mRNA for the soybean cyclin induced the maturation of Xenopus oocytes. Other cyclin genes may be present because, on Southern blot analysis of soybean genomic DNA, the isolated soybean cDNA probe hybridized with additional genes under low stringency.  相似文献   
106.
The outcome of hepatitis C virus (HCV) infection varies among individuals, but the genetic factors involved remain unknown. We conducted a population-based association study in which 238 Japanese individuals positive for anti-HCV antibody were genotyped for 269 single nucleotide polymorphisms (SNPs) in 103 candidate genes that might influence the course of infection. Altogether, 50 SNPs in 32 genes were listed. Genetic polymorphisms in IL4, IL8RB, IL10RA, PRL, ADA, NFKB1, GRAP2, CABIN1, IFNAR2, IFI27, IFI41, TNFRSF1A, ALDOB, AP1B1, SULT2B1, EGF, EGFR, TGFB1, LTBP2, and CD4 were associated with persistent viremia (P < 0.05), whereas those in IL1B, IL1RL1, IL2RB, IL12RB1, IL18R1, STAT5A, GRAP2, CABIN1, IFNAR1, Mx1, BMP8, FGL1, LTBP2, CD34, and CD80 were associated with different serum alanine aminotransferase levels in HCV carriers (P < 0.05). The sorted genes allow us to draw novel hypotheses for future studies of HCV infection to ultimately identify bona fide genes and their variations.  相似文献   
107.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   
108.
Solaniol, a Toxic Metabolite of Fusarium solani   总被引:1,自引:6,他引:1  
Fusarium solani M-1-1 isolated from moldy bean hulls produces T-2 toxin, diacetoxyscirpenol, and a new toxic trichothecene, solaniol, in Czapek-Dox-peptone medium.  相似文献   
109.
The effect of hepatocyte growth factor/scatter factor (HGF/SF) on the proliferation of human skin fibroblasts was examined. At concentrations above 1.0 ng/ml, both native and recombinant human HGF/SF stimulated the DNA synthesis determined by [3H]thymidine incorporation, which was completely inhibited by an anti-human HGF/SF monoclonal antibody. The maximal DNA synthesis in the treated cells was nearly twice that in untreated cells. HGF/SF also caused an increase in the labelling index, DNA content and cell number. The effect of HGF/SF was more than additive to the maximal effect of insulin and epidermal growth factor, other mitogens for the fibroblasts. These results indicate that human skin fibroblasts are sensitive to the mitogenic action of HGF/SF.  相似文献   
110.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号