首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1655篇
  免费   109篇
  2022年   14篇
  2021年   19篇
  2020年   8篇
  2019年   15篇
  2018年   12篇
  2017年   17篇
  2016年   22篇
  2015年   44篇
  2014年   36篇
  2013年   129篇
  2012年   86篇
  2011年   81篇
  2010年   50篇
  2009年   49篇
  2008年   92篇
  2007年   95篇
  2006年   69篇
  2005年   91篇
  2004年   69篇
  2003年   63篇
  2002年   75篇
  2001年   50篇
  2000年   70篇
  1999年   45篇
  1998年   18篇
  1997年   27篇
  1996年   24篇
  1995年   12篇
  1994年   18篇
  1992年   31篇
  1991年   33篇
  1990年   28篇
  1989年   22篇
  1988年   23篇
  1987年   19篇
  1986年   10篇
  1985年   22篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   8篇
  1980年   10篇
  1979年   11篇
  1978年   11篇
  1975年   11篇
  1974年   13篇
  1973年   8篇
  1972年   10篇
  1970年   9篇
  1967年   7篇
排序方式: 共有1764条查询结果,搜索用时 15 毫秒
971.
Recently, accumulating reports have suggested the importance of endoplasmic reticulum (ER) stress signaling in the differentiation of several tissues and cells, including myoblasts and osteoblasts. Secretory cells are easily subjected to ER stress during maturation of their secreted proteins. Skin fibroblasts produce and release several proteins, such as collagens, matrix metalloproteinases (MMPs), the tissue inhibitors of metalloproteinases (TIMPs) and glycosaminoglycans (GAGs), and the production of these proteins is increased at wound sites. Differentiation of fibroblasts into myofibroblasts is one of the key factors for wound healing and that TGF-β can induce fibroblast differentiation into myofibroblasts, which express α-smooth muscle actin. Well-differentiated myofibroblasts show increased production of collagen and TGF-β, and bring about wound healing. In this study, we examined the effects of ER stress signaling on the differentiation of fibroblasts, which is required for wound healing, using constitutively ER stress-activated primary cultured fibroblasts. The cells expressed positive α-smooth muscle actin signals without TGF-β stimulation compared with control fibroblasts. Gel-contraction assays suggested that ER stress-treated primary fibroblasts caused stronger shrinkage of collagen gels than control cells. These results suggest that ER stress signaling could accelerate the differentiation of fibroblasts to myofibroblasts at injured sites. The present findings may provide important insights for developing therapies to improve wound healing.  相似文献   
972.
Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required.  相似文献   
973.
974.
975.
To characterize avian MTs, MT cDNAs were cloned from liver of cormorant (Phalacrocorax carbo) and mallard (Anas platyrhynchos). Expression profiles of MT isoforms and relationships between metal accumulation and MT mRNA expression in tissues were also investigated. We succeeded in cDNA cloning of MT1/2 from cormorant and MT1 in mallard. DNA sequence of chicken MT1 was obtained from chicken (Gallus gallus) genomic database. Considering previous reports on avian MTs, birds possess at least two distinct MT isoforms. Comparison of genomic synteny among vertebrates and phylogenetic analysis of MT amino acid sequences revealed that avian MT1/2 are evolutionarily close to mammalian MT3. Messenger RNAs of both MT isoforms were detected in all the tissues/organs in cormorant and mallard. Liver was the primary organ for cormorant MT1/2, and mallard MT2, whereas MT1 was dominant in mallard heart. Interspecies comparison of tissue distribution of MT mRNA expression between cormorant and mallard indicated that MT2 profile was similar, but MT1 was not. Significant positive correlations of mRNA expression levels between MT1 and MT2 were observed in the liver and kidney of cormorants, whereas no correlation was found in mallards. Expression levels of cormorant MT1/2 showed significant positive correlations with hepatic Cu and Zn concentrations, suggesting that both MT isoforms were induced by Cu and Zn in livers. Cormorant MT2 expression level exhibited a significant positive correlation with hepatic Ag, and a negative correlation with Rb, indicating that Ag and Rb concentrations depend on the expression of MT2 by Cu and Zn. In mallard, MT1 had no correlation with any metal concentration, and MT2 expression was positively correlated only with Cu, even though hepatic Cu and Zn concentrations in mallard were much higher than in cormorant. This may indicate that cormorant is a more susceptible species than mallard in terms of MT induction. These findings suggest tissue-, species-, and MT isoform-specific responses to metal stresses in these aquatic birds.  相似文献   
976.
Adiponectin has been shown to stimulate fatty acid oxidation and enhance insulin sensitivity through the activation of AMP-activated protein kinase (AMPK) in the peripheral tissues. The effects of adiponectin in the central nervous system, however, are still poorly understood. Here, we show that adiponectin enhances AMPK activity in the arcuate hypothalamus (ARH) via its receptor AdipoR1 to stimulate food intake; this stimulation of food intake by adiponectin was attenuated by dominant-negative AMPK expression in the ARH. Moreover, adiponectin also decreased energy expenditure. Adiponectin-deficient mice showed decreased AMPK phosphorylation in the ARH, decreased food intake, and increased energy expenditure, exhibiting resistance to high-fat-diet-induced obesity. Serum and cerebrospinal fluid levels of adiponectin and expression of AdipoR1 in the ARH were increased during fasting and decreased after refeeding. We conclude that adiponectin stimulates food intake and decreases energy expenditure during fasting through its effects in the central nervous system.  相似文献   
977.
1. The effect of dietary amino acids and protein on cholecystokinin (CCK) release into plasma was investigated in chicks by feeding a meal through a stomach tube, followed by the CCK determination with specific CCK-8 antibody. 2. The results showed that both isolated soya protein and an amino acid mixture simulating the amino acid composition of the soya protein increased the release of CCK, though to a lesser extent with a delayed response in the former, when added to a protein-free diet. 3. Among amino acids added singly to the protein-free diet, phenylalanine was more efficient than arginine and valine, exerting a response almost identical to the complete amino acid mixture.  相似文献   
978.
DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent ‘metaepigenomic’ analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号