首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   17篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   20篇
  2012年   8篇
  2011年   18篇
  2010年   5篇
  2009年   8篇
  2008年   14篇
  2007年   13篇
  2006年   14篇
  2005年   10篇
  2004年   16篇
  2003年   11篇
  2002年   8篇
  2001年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
31.
32.
The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have "on-off" control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca(2+)-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca(2+)-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.  相似文献   
33.
34.
We examined the effects of the mutual substitution of amino acid residues at positions 216 and 219 between rat CYP2D1 and CYP2D2 on their microsomal contents and enzymatic functions using a yeast cell expression system and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) as a substrate. CYP2D1 has amino acid residues, leucine and valine, at positions of 216 and 219, respectively, whereas CYP2D2 has phenylalanine and aspartic acid at the same positions. In reduced carbon monoxide-difference spectroscopic analysis, the substitution of Asp-219 of CYP2D2 by valine markedly increased a peak at 450 nm and concomitantly decreased a peak at 420 nm, while the replacement of Phe-216 of CYP2D2 with leucine gave no observable change. The double substitution of Phe-216 and Asp-219 by leucine and valine, respectively, yielded a typical CYP spectrum. The substitution of Val-219 of CYP2D1 by aspartic acid decreased the CYP content to one-half, whereas the replacement of Leu-216 with phenylalanine did not have any effect. The double substitution of Leu-216 and Val-219 of CYP2D1 by phenylalanine and aspartic acid, respectively, diminished the CYP content by 90%. CYP2D1 catalyzed both 5-MeO-DIPT N-deisopropylation and O-demethylation at relatively low levels, while CYP2D2 catalyzed 5-MeO-DIPT O-demethylation efficiently. The substitution of the amino acid at position 216 substantially increased 5-MeO-DIPT oxidation activities of the two CYP2D enzymes. The replacement of the amino acid at position 219 increased the 5-MeO-DIPT O- and N-dealkylation activities of CYP2D1, whereas it decreased the 5-MeO-DIPT O-demethylation activity of CYP2D2. These results indicate that amino acid residues at positions 216 and 219 have important roles in the enzymatic functions of rat CYP2D1 and CYP2D2.  相似文献   
35.
In the present study, we investigated the effect of osmolality on the paracellular ion conductance (Gp) composed of the Na+ conductance (GNa) and the Cl conductance (GCl). An osmotic gradient generated by NaCl with relatively apical hypertonicity (NaCl-absorption-direction) induced a large increase in the GNa associated with a small increase in the GCl, whereas an osmotic gradient generated by NaCl with relatively basolateral hypertonicity (NaCl-secretion-direction) induced small increases in the GNa and the GCl. These increases in the Gp caused by NaCl-generated osmotic gradients were diminished by the application of sucrose canceling the NaCl-generated osmotic gradient. The osmotic gradient generated by basolateral application of sucrose without any NaCl gradients had little effects on the Gp. However, this basolateral application of sucrose produced a precondition drastically quickening the time course of the action of the NaCl-generated osmotic gradient on the Gp. Further, we found that application of the basolateral hypotonicity generated by reduction of NaCl concentration shifted the localization of claudin-1 to the apical from the basolateral side. These results indicate that the osmotic gradient regulates the paracellular ion conductive pathway of tight junctions via a mechanism dependent on the direction of NaCl gradients associated with a shift of claudin-1 localization to the apical side in renal A6 epithelial cells.  相似文献   
36.
A high-performance liquid chromatographic assay was developed for the quantitative determination of the sulfur-containing amino acids N-acetyl- -cysteine (NAC) and -cysteine (Cys) in rat plasma. The thiols were separated by reverse-phase ion-pair chromatography, and the column eluent was continuously mixed with an iodoplatinate-containing solution. The substitution of sulfur of the thiol compound with iodide was quantitatively determined by measuring changes in the absorption at 500 nm. The low-molecular-weight disulfides and mixed disulfide conjugates of thiols with proteins were entirely reduced to the original reduced compounds by dithiothreitol. By reducing these two types of disulfides separately during sample pretreatment, the reduced, protein-unbound, and total thiol concentrations could also be determined. Validation testing was performed, and no problems were encountered. The limit of detection was approximately 20 pmol of thiol on the column. The present method was used to measure the plasma concentrations of NAC and Cys in the rat after a bolus intravenous administration of NAC, focusing on disulfide formation. The binding of NAC to protein through mixed disulfide formation proceeds in a time-dependent and reversible manner. Moreover, this “stable” covalent binding might limit total drug elimination, while the unbound NAC is rapidly eliminated. Consequently, the analytical method described in this study is very useful for the determination of plasma NAC and Cys, including disulfide conjugates derived from them.  相似文献   
37.
38.
We have previously produced two bioactive lysine-deficient mutants of TNF-alpha (mutTNF-K90R,-K90P) and found that these mutants have bioactivity superior to wild-type TNF (wtTNF). Because these mutants contained same amino acid except for amino acid 90, it is unclear which amino acid residue is optimal for showing bioactivity. We speculated that this amino acid position was exchangeable, and this amino acid substitution enabled the creation of lysine-deficient mutants with enhanced bioactivity. Therefore, we produced mutTNF-K90R variants (mutTNF-R90X), in which R90 was replaced with other amino acids, to assay their bioactivities and investigated the importance of amino acid position 90. As a result, mutTNF-R90X that replaced R90 with lysine, arginine and proline were bioactive, while other mutants were not bioactive. Moreover, these three mutants showed bioactivity as good as or better than wtTNF. R90 replaced with lysine or arginine had especially superior binding affinities. These results suggest that the amino acid position 90 in TNF-alpha is important for TNF-alpha bioactivity and could be altered to improve its bioactivity to generate a "super-agonist".  相似文献   
39.
40.

Background

We have previously reported that low concentrations of cigarette smoke extract induce DNA damage without leading to apoptosis or necrosis in human bronchial epithelial cells (HBECs), and that IL-6/STAT3 signaling contributes to the cell survival. Since NF-κB is also involved in regulating apoptosis and cell survival, the current study was designed to investigate the role of NF-κB in mediating cell survival in response to cigarette smoke exposure in HBECs.

Methods

Both the pharmacologic inhibitor of NF-κB, curcumin, and RNA interference targeting p65 were used to block NF-κB signaling in HBECs. Apoptosis and cell survival were then assessed by various methods including COMET assay, LIVE/DEAD Cytotoxicity/Viability assay and colony formation assay.

Results

Cigarette smoke extract (CSE) caused DNA damage and cell cycle arrest in S phase without leading to apoptosis in HBECs as evidenced by TUNEL assay, COMET assay and DNA content assay. CSE stimulated NF-κB -DNA binding activity and up-regulated Bcl-XL protein in HBECs. Inhibition of NF-κB by the pharmacologic inhibitor curcumin (20 μM) or suppression of p65 by siRNA resulted in a significant increase in cell death in response to cigarette smoke exposure. Furthermore, cells lacking p65 were incapable of forming cellular colonies when these cells were exposed to CSE, while they behaved normally in the regular culture medium.

Conclusion

The current study demonstrates that CSE activates NF-κB and up-regulates Bcl-XL through NF-kB activation in HBECs, and that CSE induces cell death in cells lacking p65. These results suggest that activation of NF-κB regulates cell survival following DNA damage by cigarette smoke in human bronchial epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号