首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   9篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   22篇
  2012年   6篇
  2011年   19篇
  2010年   6篇
  2009年   3篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有172条查询结果,搜索用时 484 毫秒
61.
62.
63.
64.
Selfish genetic elements called transposons can insert themselves at new locations in host genomes to modify gene structure and alter gene expression. Expansion of transposons can occur when novel transposition events are transmitted to subsequent generations after germline hopping. Therefore, organisms seem likely to have evolved defense mechanisms to silence transposons in the germline. Recently, small RNAs interacting with Piwi proteins (piwi-interacting RNAs: piRNAs) have been demonstrated to be involved in genomic defense mechanism against transposons. Here, we show that piRNA-like small RNAs are present abundantly in the Bombyx ovary. We cloned 38,493 kinds of Bombyx small RNA from the ovary and performed functional characterization. Bombyx small RNAs showed a unimodal length distribution with a peak at 28nt and a strong bias for U at the 5' end. We found that 12,869 kinds of Bombyx small RNAs were associated with transposons or repetitive sequences. We classified them as repeat-associated small interfering RNAs (rasiRNAs), a subclass of piRNAs. Notably, antisense rasiRNAs have a strong bias toward U at 5' ends; in contrast, sense rasiRNAs have a strong bias toward A at nucleotide position 10, indicating that the piRNA amplification loop proposed in Drosophila is evolutionarily conserved in Bombyx. These results suggest that Bombyx small RNAs regulate transposon activity.  相似文献   
65.
[11C]Methionine was supplied through barley roots and the 11C signal was followed for 90 min using a real-time imaging system (PETIS), with subsequent development of autoradiographic images of the whole plant. In all cases, [11C]methionine was first translocated to the 'discrimination center', the basal part of the shoot, and this part was most strongly labeled. Methionine absorbed by the roots of the plants was subsequently translocated to other parts of the plant. In Fe-deficient barley plants, a drastic reduction in [11C]methionine translocation from the roots to the shoot was observed, while a greater amount of 11C was found in the leaves of Fe-sufficient or methionine-pretreated Fe-deficient plants. Treatment of Fe-deficient plants with aminooxyacetic acid, an inhibitor of nicotianamine aminotransferase, increased the translocation of [11C]methionine to the shoot. The retention of exogenously supplied [11C]methionine in the roots of Fe-deficient barley indicates that the methionine is used in the biosynthesis of mugineic acid phytosiderophores in barley roots. This and the absence of methionine movement from shoots to the roots suggest that the mugineic acid precursor methionine originates in the roots of plants.  相似文献   
66.
In order to clarify the structural relationship between lipid monolayer and bilayer membranes, physical states of these membranes are discussed from their energetic points of view. It is concluded that the monolayer formed at the oil/water interface is a proper model system to represent the physical state of half of a bilayer in its liquid crystalline state. The theoretical prediction is confirmed by the monolayer surface tension measurements and the bilayer conductance experiments with water soluble (extrinsic) proteins. It is also deduced that the surface pressure of the bilayer in the liquid crystalline state is quite high, about 45 dyn/cm, and the interaction of cytochrome c with the bilayer is mainly electrostatic at the bilayer membrane periphery.  相似文献   
67.
Summary A method for the production and preparation of an enzyme which degrades yeast cell walls from a species of aRhizoctonia (tentatively identified asR. solani) was established on a commercial scale. The production of crude enzyme powder, having a lytic activity of 100 units/mg, in batches of 80 kg is feasible.The enzyme preparation was evaluated for industrial use. When yeast cells were treated with this enzyme, the digestibility of feed yeast was improved 1.4–2 fold in vitro; the efficiency of a mechanical disintegrator in extracting cellular substances was increased 35–50%; the release of soluble glucans having widely varying degrees of polymerization was induced; the extraction of cellular protein by alkali was facilitated 2–3 fold; an 80% release of cell-bound invertase was induced and 2–3 times more yeast extract could be prepared.Studies on Fungal Enzymes Active in Hydrolysing Yeast Cell Wall (VII)  相似文献   
68.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena. To elucidate the physiological roles of transglutaminase at the molecular level, we need to identify its physiological protein substrates and clarify the relationship between transglutaminase modification of protein substrates and biological responses. Here we examined whether betaine-homocysteine S-methyltransferase (BHMT: EC 2.1.1.5) can be a substrate of tissue-type transglutaminase by in vitro experiments using porcine liver BHMT and guinea pig liver transglutarninase. Guinea pig liver transglutaminase incorporated 5-(biotinamido) pentylamine and [3H] histamine into BHMT in a time-dependent manner. Putrescine and spermidine also seemed to be incorporated into BHMT by transglutaminase. In the absence of the primary amines, BHMT subunits were cross-linked intra- and intermolecularly. BHMT activity was decreased significantly through the cross-linking by transglutaminase. Histamine incorporation slightly reduced the BHMT activity. Peptide fragments of BHMT containing the glutamine residues reactive for transglutaminase reaction were isolated through biotin labelling, proteinase digestion, biotin-avidin a affinity separation, and reverse phase HPLC. The results of amino acid sequence analyses of these peptides and sequence homology alignment with other mammalian liver BHMT subunits showed that these reactive glutamine residues were located in the region near the carboxyl terminal of porcine BHMT subunit. These results suggested that the liver BHMT can be modified by tissue-type transglutaminase and its activity is regulated repressively by the modification, especially by the cross-linking. This regulatory reaction might be involved in the regulation of homocysteine metabolism in the liver.  相似文献   
69.
70.
Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+   总被引:4,自引:0,他引:4  
Only graminaceous monocots possess the Strategy II iron (Fe)-uptake system in which Fe is absorbed by roots as an Fe3+-phytosiderophore. In spite of being a Strategy II plant, however, rice (Oryza sativa) contains the previously identified Fe2+ transporter OsIRT1. In this study, we isolated the OsIRT2 gene from rice, which is highly homologous to OsIRT1. Real-time PCR analysis revealed that OsIRT1 and OsIRT2 are expressed predominantly in roots, and these transporters are induced by low-Fe conditions. When expressed in yeast (Saccharomyces cerevisiae) cells, OsIRT2 cDNA reversed the growth defects of a yeast Fe-uptake mutant. This was similar to the effect of OsIRT1 cDNA. OsIRT1- and OsIRT2-green fluorescent protein fusion proteins localized to the plasma membrane when transiently expressed in onion (Allium cepa L.) epidermal cells. OsIRT1 promoter-GUS analysis revealed that OsIRT1 is expressed in the epidermis and exodermis of the elongating zone and in the inner layer of the cortex of the mature zone of Fe-deficient roots. OsIRT1 expression was also detected in the ccompanion cells. Analysis using the positron-emitting tracer imaging system showed that rice plants are able to take up both an Fe3+-phytosiderophore and Fe2+. This result indicates that, in addition to absorbing an Fe3+-phytosiderophore, rice possesses a novel Fe-uptake system that directly absorbs the Fe2+, a strategy that is advantageous for growth in submerged conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号