首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2181篇
  免费   106篇
  2022年   12篇
  2021年   23篇
  2020年   11篇
  2019年   20篇
  2018年   27篇
  2017年   34篇
  2016年   51篇
  2015年   70篇
  2014年   80篇
  2013年   139篇
  2012年   129篇
  2011年   141篇
  2010年   95篇
  2009年   84篇
  2008年   169篇
  2007年   145篇
  2006年   163篇
  2005年   147篇
  2004年   137篇
  2003年   144篇
  2002年   146篇
  2001年   21篇
  2000年   14篇
  1999年   23篇
  1998年   32篇
  1997年   31篇
  1996年   22篇
  1995年   21篇
  1994年   5篇
  1993年   19篇
  1992年   12篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   12篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1973年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2287条查询结果,搜索用时 15 毫秒
41.
Plum pox virus (PPV) is one of the most important plant viruses causing serious economic losses. Thus far, strain typing based on the definition of 10 monophyletic strains with partially differentiable biological properties has been the sole approach used for epidemiological characterization of PPV. However, elucidating the genetic determinants underlying intra-strain biological variation among populations or isolates remains a relevant but unexamined aspect of the epidemiology of the virus. In this study, based on complete nucleotide sequence information of 210 Japanese and 47 non-Japanese isolates of the PPV-Dideron (D) strain, we identified five positively selected sites in the PPV-D genome. Among them, molecular studies showed that amino acid substitutions at position 2,635 in viral replicase correlate with viral titre and competitiveness at the systemic level, suggesting that amino acid position 2,635 is involved in aphid transmission efficiency and symptom severity. Estimation of ancestral genome sequences indicated that substitutions at amino acid position 2,635 were reversible and peculiar to one of two genetically distinct PPV-D populations in Japan. The reversible amino acid evolution probably contributes to the dissemination of the virus population. This study provides the first genomic insight into the evolutionary epidemiology of PPV based on intra-strain biological variation ascribed to positive selection.  相似文献   
42.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   
43.
44.
The chemical properties of Amadori compounds in the presence of transition metal ions were studied, using the analogs 1-deoxy-1- n -butylamino- d -fructose (DBF) and N &#102 -formyl-fructoselysine (fFL). The following characteristics were revealed: (a) DBF combined easily with Cu 2+ (but no other transition metal ions) to form a DBF-Cu 2+ complex in phosphate buffer, pH 7.4; (b) the complex was unstable, and degraded with the release of Cu + during incubation at 37°C; (c) degradation of the complex was associated with the production of hydroxyl radicals by the Fenton reaction and &#102 -dicarbonyl compounds by non-autoxidative degradation; and (d) properties of DBF were similar to those of fFL. The above properties were additionally observed in glycated poly-Lys (GPL). Our findings indicate a novel mechanism for the generation of hydroxyl radicals and &#102 -dicarbonyl compounds from Amadori adducts in the presence of Cu 2+ .  相似文献   
45.
A notable advantage of zebrafish as a model organism is the ease of gene knockdown using morpholino antisense oligonucleotide (MO). However, zebrafish morphants injected with MO for a target protein often show heterogeneous phenotypes, despite controlling the injection volume of the MO solution in all embryos. We developed a method for estimating the quantity of MO injected into each living morphant, based on the co-injection of a control MO labeled with the fluorophore lissamine. By applying this method for knockdown of cardiac troponin T (tnnt2a) in zebrafish, we could efficiently select the partial tnnt2a-depleted zebrafish with a decreased heart rate and impairment of cardiac contraction. To investigate cardiac impairment of the tnnt2a morphant, we performed fluorescent cardiac imaging using Bodipy-ceramide. Cardiac image analysis showed moderate reduction of tnnt2a impaired diastolic distensibility and decreased contraction and relaxation velocities. To the best of our knowledge, this is the first report to analyze the role of tnnt2a in cardiac function in tnnt2a-depleted living animals. Our combinatorial approach can be applied for analyzing the molecular function of any protein associated with human cardiac diseases.  相似文献   
46.
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis.  相似文献   
47.
Capsicum spp. are widely cultivated for use as vegetables and spices. The Kihara Institute for Biological Research, Yokohama City University, Japan, has stocks of approximately 800 lines of Capsicum spp. collected from various regions of Central and South America, the regions of origin for Capsicum spp. In this study, 5,751 primer pairs for simple sequence repeat markers, based on 118,060 publicly available sequences of expressed sequence tags of Capsicum annuum, were designed and subjected to a similarity search against the genomic sequence of tomato, a model Solanaceae species. Nucleotide sequences spanning 2,245 C. annuum markers were successfully mapped onto the tomato genome, and 96 of these, which spanned the entire tomato genome, were selected for further analysis. In genotyping analysis, 60 out of the 77 markers that produced specific DNA amplicons showed polymorphism among the Capsicum lines examined. On the basis of the resulting data, the 192 tested lines were grouped into five main clusters. The additional sequencing analysis of the plastid genes, matK and rbcL, divided the resources into three groups. As a result, 19 marker loci exhibited genotypes specific to species and cluster, suggesting that the DNA markers are useful for species identification. Information on the DNA markers will contribute to Capsicum genetics, genomics, and breeding.  相似文献   
48.
Ophiocordyceps sessilis, a new species of Ophiocordycipitaceae, Hypocreales, was found on Camponotus obscuripes ants, where the ants were primarily infected by another close relative, O. pulvinata. Morphological observation clearly indicated that O. sessilis and O. pulvinata are distinct species. Ophiocordyceps sessilis exhibited superficial development of perithecia and ascospore disarticulation into part-spores, not known in O. pulvinata. Nucleotide sequence data suggested that O. sessilis belongs in Ophiocordyceps, Ophiocordycipitaceae. Molecular data also indicated that O. sessilis is a close relative of O. cuboidea, O. prolifica, O. paracuboidea, and O. ryogamiensis, which are all known to produce part-spores. Since O. sessilis is always associated with ants infected by O. pulvinata, O. sessilis may be a hyperparasite of O. pulvinata.  相似文献   
49.
Highlights? Tmem64-deficient mice show increased bone volume ? Tmem64 deficiency reduces [Ca2+]i oscillation in response to RANKL stimulation ? Tmem64 interacts with SERCA2 ? Tmem64 positively regulates osteoclast formation via SERCA2/Ca2+ signaling  相似文献   
50.
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号