首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   38篇
  2022年   7篇
  2021年   9篇
  2020年   11篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   9篇
  2015年   17篇
  2014年   31篇
  2013年   53篇
  2012年   42篇
  2011年   50篇
  2010年   29篇
  2009年   29篇
  2008年   49篇
  2007年   73篇
  2006年   45篇
  2005年   65篇
  2004年   65篇
  2003年   71篇
  2002年   55篇
  2001年   30篇
  2000年   33篇
  1999年   24篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   13篇
  1992年   22篇
  1991年   15篇
  1990年   11篇
  1989年   16篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1976年   6篇
  1975年   7篇
  1974年   10篇
  1973年   8篇
  1966年   4篇
排序方式: 共有1096条查询结果,搜索用时 15 毫秒
951.
The deposition of aggregated tau in cytoplasmic inclusions is one of the common neuropathological features in various dementing neurodegenerative disorders. At present, it remains unclear whether tau inclusions exert neurotoxicity or they are simply the consequence of neurodegeneration. In our approach for the analysis of the composition of tau inclusions, we detected the intense binding of anti-diacylglycerol kinase-zeta (DGK-zeta) antibodies to Pick bodies (PBs), which represent tau inclusions in Pick's disease. The polyclonal antibodies were found to cross-react with a 21-kDa protein, but not with tau or ubiquitin, on Western blots of normal human brain extracts. Analysis of the 21-kDa protein by two-dimensional-gel electrophoresis and mass-spectrometry revealed that the protein is an N-terminal fragment of proSAAS (a human granin-like neuroendocrine peptide precursor). Our results suggest that sequestration of the N-terminal fragment of proSAAS in intracellular PBs may cause a functional disturbance of neurons in Pick's disease.  相似文献   
952.
Aurora-A, a member of the Aurora/Ipl1-related kinase family, is overexpressed in various types of cancer and considered to play critical roles in tumorigenesis. To better understand the pathological effect of Aurora-A activation, it is first necessary to elucidate the physiological functions of Aurora-A. Here, we have investigated the roles of Aurora-A in mitotic progression with the small interfering RNA, antibody microinjection, and time lapse microscopy using human cells. We demonstrated that suppression of Aurora-A by small interfering RNA caused multiple events to fail in mitosis, such as incorrect separation of centriole pairs, misalignment of chromosomes on the metaphase plate, and incomplete cytokinesis. Antibody microinjection of Aurora-A into late G2 cells induced dose-dependent failure in separation of centriole pairs at prophase, indicating that Aurora-A is essential for proper separation of centriole pairs. When we injected anti-Aurora-A antibodies into prometaphase cells that had separated their centriole pairs, chromosomes were severely misaligned on the metaphase plate, indicating that Aurora-A is required for proper movement of chromosomes on the metaphase plate. Furthermore, inhibition of Aurora-A at metaphase by microinjected antibodies prevented cells from completing cytokinesis, suggesting that Aurora-A also has important functions in late mitosis. These results strongly suggest that Aurora-A is essential for many crucial events during mitosis and that the phosphorylation of a series of substrates by Aurora-A at different stages of mitosis may promote diverse critical events in mitosis to maintain chromosome integrity in human cells.  相似文献   
953.
It is known that retinally degenerate C57BL/6J (rd/rd) mice have unattenuated circadian photosensitivity. However, the authors have previously found that CBA/J (rd/rd) mice that carry the same rd mutation have attenuated circadian photosensitivity compared to normal CBA/N (+/+) mice. In the present study, a quantitative trait locus (QTL) analysis using C57BL/6J (rd/rd) and CBA/J (rd/rd) mice was conducted in order to identify the genes affecting circadian photosensitivity of the rd mice. As a result, several putative QTLs onthree separate chromosomes (8, 12, 17) were detected, which indicates that circadian photosensitivity in rd mice is altered by multiple genes. Identification of these genes may provide new insights into the understanding of regulation of circadian photoentrainment and sleep-wake disorders.  相似文献   
954.
The role of neurokinin 1 (NK(1)) receptor and possible interaction between NK(1) and N-methyl-D-aspartic acid (NMDA) glutamatergic receptors were investigated on spinal c-fos expression after lower urinary tract irritation with acetic acid infusion in rats. At both levels of the first (L(1)) and sixth lumbar (L(6)) spinal cord, where most of hypogastric nerve and pelvic nerve afferent terminals project, respectively, the selective NK(1) receptor antagonist CP-99,994 dose dependently reduced the total number of c-fos protein (Fos)-positive cells. However, CP-100,263, the enantiomer of CP-99,994 with a very low affinity for NK(1) receptor, did not have any effect on the total number of Fos-positive cells. Coadministration of a low dose (1 mg/kg) of CP-99,994 and NMDA receptor antagonist (MK-801), either of which alone did not affect c-fos expression, significantly inhibited c-fos expression at both levels of the spinal cord. Regarding regional differences, the number of Fos-positive cells decreased significantly at all regions of the L(6) level, but only at the dorsal horn of the L(1) level. These results indicate that NK(1) receptor is involved in spinal c-fos expression after lower urinary tract irritation and that NK(1) and NMDA receptors have a synergistic interaction in the spinal processing of nociceptive input from the lower urinary tract.  相似文献   
955.
956.
Natural immunomodulator lactoferrin is known to exert an anti-inflammatory effect. However, there have been no studies that examine the mode of action of lactoferrin in reducing intestinal damage. We investigated the effect of lactoferrin on a trinitrobenzenesulfonic acid (TNBS)-induced colitis model in rats. Bovine lactoferrin was given once daily through gavage, starting 3 days before (preventive mode) or just after TNBS administration (treatment mode) until death. The distal colon was removed to be examined. Colitis was attenuated by lactoferrin via both modes in a dose-dependent manner, as reflected by improvement in macroscopic and histological scores and myeloperoxidase activity. Lactoferrin caused significant induction of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10, significant reductions in the proinflammatory cytokines tumor necrosis factor-alpha and IL-1beta, and downregulation of the nuclear factor-kappaB pathway. We concluded that lactoferrin exerts a protective effect against colitis in rats via modulation of the immune system and correction of cytokine imbalance. Lactoferrin has potential as a new therapeutic agent for inflammatory bowel disease.  相似文献   
957.
958.
Floral transition should be strictly regulated because it is one of the most critical developmental processes in plants. Arabidopsis terminal flower 2 (tfl2) mutants show an early-flowering phenotype that is relatively insensitive to photoperiod, as well as several other pleiotropic phenotypes. We found that the early flowering of tfl2 is caused mainly by ectopic expression of the FLOWERING LOCUS T (FT) gene, a floral pathway integrator. Molecular cloning of TFL2 showed that it encodes a protein with homology to heterochromatin protein 1 (HP1) of animals and Swi6 of fission yeast. TFL2 protein localizes in subnuclear foci and expression of the TFL2 gene complemented yeast swi6(-) mutants. These results suggested that TFL2 might function as an HP1 in Arabidopsis: Gene expression analyses using DNA microarrays, however, did not show an increase in the expression of heterochromatin genes in tfl2 mutants but instead showed the upregulation of the floral homeotic genes APETALA3, PISTILLATA, AGAMOUS and SEPALLATA3. The pleiotropic phenotype of the tfl2 mutant could reflect the fact that TFL2 represses the expression of multiple genes. Our results demonstrate that despite its homology to HP1, TFL2 is involved in the repression of specific euchromatin genes and not heterochromatin genes in Arabidopsis.  相似文献   
959.
Types and distributions of inwardly rectifying potassium (Kir) channels are one of the major determinants of the electrophysiological properties of cardiac myocytes. Kir2.1 (classical inward rectifier K(+) channel), Kir6.2/SUR2A (ATP-sensitive K(+) channel) and Kir3.1/3.4 (muscarinic K(+) channels) in cardiac myocytes are commonly upregulated by a membrane lipid, phosphatidylinositol 4,5-bisphosphates (PIP(2)). PIP(2) interaction sites appear to be conserved by positively charged amino acid residues and the putative alpha-helix in the C-terminals of Kir channels. PIP(2) level in the plasma membrane is regulated by the agonist stimulation. Kir channels in the cardiac myocytes seem to be actively regulated by means of the change in PIP(2) level rather than by downstream signal transduction pathways.  相似文献   
960.
CUP-SHAPED COTYLEDON (CUC)1 encodes members of the NAC family. These are functionally redundant genes that are involved in shoot apical meristem (SAM) formation and cotyledon separation during embryogenesis in Arabidopsis. We analyzed transgenic plants overexpressing CUC1 (35S::CUC1). The cotyledons of these transgenic seedlings regularly had two basal lobes, small and round epidermal cells between the sinuses, and adventitious SAMs on the adaxial surface of this region. This suggests that CUC1 promotes adventitious SAM formation by maintaining epidermal cells in an undifferentiated state. In 35S::CUC1 cotyledons, the class I knotted-like homeobox (KNOX) genes, including SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS (BP), which are involved in SAM formation and/or maintenance, were ectopically expressed before adventitious SAM formation. In stm mutants, ectopic expression of CUC1 could not induce adventitious SAMs, whereas they continued to be observed in bp mutants. These results suggest that STM, but not BP, is necessary for the formation of adventitious SAMs in 35S::CUC1 cotyledons. Furthermore, we examined the relationship between CUC1 and ASYMMETRIC LEAVES (AS)1 and AS2. The as1 and as2 mutations genetically enhance 35S::CUC1 phenotypes even in the absence of STM function. Interestingly, the as1 mutation can partially rescue the mutant vegetative development phenotypes in the cuc1 cuc2 double mutant. Our results suggest that CUC1 positively regulates SAM formation not only through STM but also through an STM-independent pathway that is negatively regulated by AS1 and AS2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号