首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   38篇
  2022年   7篇
  2021年   9篇
  2020年   11篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   9篇
  2015年   17篇
  2014年   31篇
  2013年   53篇
  2012年   42篇
  2011年   50篇
  2010年   29篇
  2009年   29篇
  2008年   49篇
  2007年   73篇
  2006年   45篇
  2005年   65篇
  2004年   65篇
  2003年   71篇
  2002年   55篇
  2001年   30篇
  2000年   33篇
  1999年   24篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   13篇
  1992年   22篇
  1991年   15篇
  1990年   11篇
  1989年   16篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1976年   6篇
  1975年   7篇
  1974年   10篇
  1973年   8篇
  1966年   4篇
排序方式: 共有1096条查询结果,搜索用时 15 毫秒
61.
Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed “KIND1” [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.  相似文献   
62.
Semaphorins provide crucial attractive and repulsive cues involved in axon guidance during neural development. Out of them, Semaphorin 4D (Sema4D) is enriched in the nervous and immune tissues, and acts as proliferative and survival factors of peripheral lymphocytes in the immune system, but is poorly understood in the nervous system. By using PC12 cells which are well known to differentiate into neural cells in response to nerve growth factor (NGF), we found that soluble forms of Sema4D had neurotrophic effects which were inhibited by neutralizing antibodies to Sema4D. Sema4D strikingly potentiated neurite outgrowth in the presence of 50 ng/ml NGF and increased sensitivity to NGF. Cells responded to very low concentrations of NGF in the presence of 1 nM Sema4D. Activation of following signal proteins, protein kinase C (PKC), L-type of voltage-dependent Ca(2+) channel, and phosphatidylinositol (PI) 3-kinase mediated neurotrophic neurite-outgrowth action of Sema4D. These findings suggest a new function of Sema4D as a neurotrophic signal in PC12 cells.  相似文献   
63.
Shiga toxin 2 (Stx2) is a major pathogenic factor in Shiga toxin-producing Escherichia coli (STEC) infections. Some factor that neutralizes Stx2 in vitro had been shown to be specifically present in human serum and we recently identified it as human serum amyloid P component (HuSAP). Here, we report the role of HuSAP in STEC infections. HuSAP could not rescue Stx2-challenged mice from death, and it instead reduced the efficacy of the Stx2-neutralizing humanized monoclonal antibody TMA-15 when a lower dose of TMA-15 was injected to the mice. By contrast, the efficacy of TMA-15 at a higher dose was uninfluenced by the presence of HuSAP. These findings suggest that HuSAP acts as a carrier protein of Stx2 rather than as a Stx2-neutralizing factor in the human circulation and that passive immune therapy with Stx2-neutralizing antibodies such as TMA-15 is useful to prevent severe complications associated with STEC infections even in the presence of HuSAP.  相似文献   
64.
Voltage-dependent ion channels control changes in ion permeability in response to membrane potential changes. The voltage sensor in channel proteins consists of the highly positively charged segment, S4, and the negatively charged segments, S2 and S3. The process involved in the integration of the protein into the membrane remains to be elucidated. In this study, we used in vitro translation and translocation experiments to evaluate interactions between residues in the voltage sensor of a hyperpolarization-activated potassium channel, KAT1, and their effect on the final topology in the endoplasmic reticulum (ER) membrane. A D95V mutation in S2 showed less S3-S4 integration into the membrane, whereas a D105V mutation allowed S4 to be released into the ER lumen. These results indicate that Asp(95) assists in the membrane insertion of S3-S4 and that Asp(105) helps in preventing S4 from being releasing into the ER lumen. The charge reversal mutation, R171D, in S4 rescued the D105R mutation and prevented S4 release into the ER lumen. A series of constructs containing different C-terminal truncations of S4 showed that Arg(174) was required for correct integration of S3 and S4 into the membrane. Interactions between Asp(105) and Arg(171) and between negative residues in S2 or S3 and Arg(174) may be formed transiently during membrane integration. These data clarify the role of charged residues in S2, S3, and S4 and identify posttranslational electrostatic interactions between charged residues that are required to achieve the correct voltage sensor topology in the ER membrane.  相似文献   
65.
WEHI164S cells were found to be very sensitive targets for in vitro killing in a 6-h culture when liver or splenic lymphocytes were used as effector cells in mice. Of particular interest, a limiting cell-dilution analysis showed that effector cells were present in the liver with a high frequency (1/4,300). In contrast to YAC-1 cells as NK targets, perforin-based cytotoxicity was not highly associated with WEHI164S killing. The major killer mechanism for WEHI164S targets was TNFalpha-mediated cytotoxicity. By cell sorting experiments, both NK cells and intermediate T cells (i.e., TCR(int) cells) were found to contain effector cells against WEHI164S cells. However, the killer mechanisms underlying these effector cells were different. Namely, NK cells killed WEHI164S cells by perforin-based cytotoxicity, TNFalpha-mediated cytotoxicity, Fas ligand cytotoxicity, and other mechanisms, whereas intermediate T cells did so mainly by TNFalpha-mediated cytotoxicity. These results suggest that TNFalpha-mediated cytotoxicity mediated by so-called natural cytotoxic (NC) cells comprised events which were performed by both NK and intermediate T cells using somewhat different killer mechanisms. Intermediate T cells which were present in the liver were able to produce TNFalpha if there was appropriate stimulation.  相似文献   
66.
Neuroglycan C (NGC) is a brain-specific transmembrane chondroitin sulfate proteoglycan. In the present study, we examined whether NGC could be phosphorylated in neural cells. On metabolic labeling of cultured cerebral cortical cells from the rat fetus with (32)P(i), serine residues in NGC were radiolabeled. Some NGC became detectable in the raft fraction from the rat cerebrum, a signaling microdomain of the plasma membrane, with cerebral development. NGC from the non-raft fraction, not the raft fraction, could be phosphorylated by an in vitro kinase reaction. The phosphorylation of NGC was inhibited by adding to the reaction mixture a recombinant peptide representing the ectodomain of NGC, but not by adding a peptide representing its cytoplasmic domain. NGC could be labeled by an in vitro kinase reaction using [gamma-(32)P]GTP as well as [gamma-(32)P]ATP, and this kinase activity was partially inhibited by 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole, a selective inhibitor of casein kinase II. In addition to the intracellular phosphorylation, NGC was also phosphorylated at the cell surface by an ectoprotein kinase. This is the first report to demonstrate that NGC can be phosphorylated both intracellularly and pericellularly, and our findings suggest that a kinase with a specificity similar to that of casein kinase II is responsible for the NGC ectodomain phosphorylation.  相似文献   
67.
68.
The unicellular cyanobacterium, Synechocystis sp. PCC 6803 is motile. A homologue of the PilT protein family, required for twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was found to be necessarily associated with cyanobacterial motility. The pilT1 (slr0161) mutant shows a pleotropic phenotype, defects in individual cell motility, and an increased number of long surface pili. Furthermore, the mutant loses its ability of natural competency. These findings demonstrate that PilT1 is essential for both cell motility and competency. Since the pilT gene contains a consensus ATP-binding motif (Walker boxes), the PilT protein is suggested for supplying energy for cell motility. The product of pilT1, overproduced in Escherichia coli and purified by Ni-affinity chromatography, hydrolyzes ATP in vitro.  相似文献   
69.
70.
The Rho family GTPase has been implicated in plexin-B1, a receptor for Semaphorin 4D (Sema4D), mediating signal transduction. Rho may also play a function in this signaling pathway as well as Rac, but the mechanisms for Rho regulation are poorly understood. In this study, we have identified two kinds of PDZ domain-containing Rho-specific guanine nucleotide exchange factors (RhoGEFs) as proteins interacting with plexin-B1 cytoplasmic domain. These PDZ domain-containing RhoGEFs showed significant homology to human KIAA0380 (PDZ-RhoGEF) and LARG (KIAA0382), respectively. Both KIAA0380 and LARG could bind plexin-B1 and a deletion mutant analysis of plexin-B1, KIAA0380 and LARG revealed that KIAA0380 and LARG bound plexin-B1 cytoplasmic tail through their PDZ domains. The tissue distribution analysis indicated that plexin-B1 was co-localized with KIAA0380 and LARG in various tissues. Immunocytochemical analysis showed that LARG was recruited to plasma membrane by plexin-B1. These results suggest that PDZ domain-containing RhoGEFs play a role in Sema4D-plexin-B1 mediating signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号