首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5538篇
  免费   348篇
  国内免费   3篇
  5889篇
  2022年   31篇
  2021年   40篇
  2019年   35篇
  2018年   61篇
  2017年   48篇
  2016年   75篇
  2015年   120篇
  2014年   148篇
  2013年   288篇
  2012年   254篇
  2011年   248篇
  2010年   156篇
  2009年   162篇
  2008年   247篇
  2007年   270篇
  2006年   248篇
  2005年   274篇
  2004年   254篇
  2003年   302篇
  2002年   257篇
  2001年   202篇
  2000年   220篇
  1999年   181篇
  1998年   79篇
  1997年   67篇
  1996年   54篇
  1995年   59篇
  1994年   52篇
  1993年   63篇
  1992年   125篇
  1991年   119篇
  1990年   111篇
  1989年   112篇
  1988年   104篇
  1987年   77篇
  1986年   77篇
  1985年   54篇
  1984年   68篇
  1983年   55篇
  1982年   46篇
  1981年   34篇
  1980年   23篇
  1979年   43篇
  1978年   34篇
  1977年   31篇
  1976年   26篇
  1974年   34篇
  1973年   23篇
  1971年   27篇
  1970年   29篇
排序方式: 共有5889条查询结果,搜索用时 15 毫秒
991.
The chloroplast NAD(P)H dehydrogenase (NDH) complex functions in PSI cyclic and chlororespiratory electron transport in higher plants. Eleven plastid-encoded and three nuclear-encoded subunits have been identified so far, but the entire subunit composition, especially of the putative electron donor-binding module, is unclear. We isolated Arabidopsis thaliana crr23 (chlororespiratory reduction) mutants lacking NDH activity according to the absence of a transient increase in Chl fluorescence after actinic light illumination. Although CRR23 shows similarity to the NdhL subunit of cyanobacterial NDH-1, it has three transmembrane domains rather than the two in cyanobacterial NdhL. Unlike cyanobacterial NdhL, CRR23 is essential for stabilizing the NDH complex, which in turn is required for the accumulation of CRR23. Furthermore, CRR23 and NdhH, a subunit of chloroplast NDH, co-localized in blue-native gel. All the results indicate that CRR23 is an ortholog of cyanobacterial ndhL in Arabidopsis, despite its diversity of structure and function.  相似文献   
992.
To investigate the functional involvement of carotenoid in the insect circadian rhythm, we observed the effect of carotenoid depletion on the hatching patterns of the silkworm under several light conditions. When eggs were transferred from continuous light (LL) to continuous darkness (DD), an overt hatching rhythm was initiated. The first hatching peak, which was observed at 13.2 h after the transfer in the carotenoid-depleted silkworm, was reduced remarkably in both control groups (carotenoid-rich and carotenoid-depleted but with lutein supplementation), though subsequent peaks occurred with similar timing. Under LD 4 : 20, LD 12 : 12 and LD 20 :4, hatching patterns depended on the dietary carotenoid and the light intensity of the photophase. At a low light intensity, carotenoid depletion suppressed hatching as a masking effect just after light-on. Under LD 4 : 20 at a low light illumination, hatchings in the carotenoid-depleted silkworm were observed during scotophase, but few larvae hatched during scotophase in the control groups. Our findings suggest that carotenoid is not indispensable for the photoreception, formation and entrainment of the circadian hatching rhythm, but that a carotenoid-dependent process that is induced by light-off and damps out in an hour-glass mode, suppresses the hatching during darkness without affecting the circadian oscillation. The possibility that this carotenoid-dependent process is involved in the photoperiodic induction in the silkworm was discussed.  相似文献   
993.
Marking behavior, marking-like behavior [3], and changes of the scent glands were observed in aged Mongolian gerbils. In Experiment 1, changes in the marking and marking-like behavior with aging were evaluated in adult male and female Mongolian gerbils of an inbred strain aged 6 to 36 months. The frequency of marking behavior in males was significantly higher than females throughout the observation period except at 36 months of age. On the other hand, frequency of marking-like behavior in males, but not in females decreased with aging, significantly. In Experiment 2, changes of the scent gland in adult males and females aged 6 to 36 months were morphologically evaluated. Macroscopic examination revealed an increase in the size length and width of the glands of males aged 12 months and females aged 6 months. Histologically the glands of all the males and females aged 6 months developed moderately or well. Some of the 12-month-old males and females showed acinar atrophy of the glands, and all the females aged 18 months or more had highly atrophied scent glands. From these results, we concluded that there is no relationship between the changes of marking behavior and those of the scent glands in aged male Mongolian gerbils, and assume that marking behavior in aged animals does not have an important meaning as marking. In Experiment 3, marking and marking-like behavior in castrated adult Mongolian gerbils aged 16 weeks were observed. The result showed that marking behavior, not marking-like behavior was inhibited after castration. From these findings, we consider that generally marking behavior in Mongolian gerbils consists of androgen-dependent marking behavior and androgen-independent marking behavior (marking-like behavior).  相似文献   
994.
This review is focusing on an industrially important enzyme, phospholipase D (PLD), exhibiting both transphosphatidylation and hydrolytic activities for various phospholipids. The transphosphatidylation activity of PLD is particularly useful for converting phosphatidylcholine (PC) into other phospholipids. During the last decade, the genes coding for PLD have been identified from various species including mammals, plants, yeast, and bacteria. However, detailed basic and applied enzymological studies on PLD have been hampered by the low productivity in these organisms. Efficient production of a recombinant PLD has also been unsuccessful so far. We recently isolated and characterized the PLD gene from Streptoverticillium cinnamoneum, producing a secretory PLD. Furthermore, we constructed an overexpression system for the secretory enzyme in an active and soluble form using Streptomyces lividans as a host for transformation of the PLD gene. The Stv. cinnamoneum PLD was proven to be useful for the continuous and efficient production of phosphatidylethanolamine (PE) from phosphatidylcholine. Thus, the secretory PLD is a promising catalyst for synthesizing new phospholipids possessing various polar head groups that show versatile physiological functions and may be utilized in food and pharmaceutical industries.  相似文献   
995.
Although the immunological and hemodynamical significance of the spleen is of great importance, few reports detail the lymphatic vessels in this organ. We have used an immunohistochemical three-dimensional imaging technique to characterize lymphatic vessels in the normal mouse spleen and have successfully demonstrated their spatial relationship to the blood vascular system for the first time. Lymphatic markers, such as LYVE-1, VEGFR-3, and podoplanin, show different staining patterns depending on their location in the spleen. LYVE-1-positive lymphatic vessels run reverse to the arterial blood flow along the central arteries in the white pulp and trabecular arteries and exit the spleen from the hilum. These lymphatic vessels are surrounded by type IV collagen, indicating that they are collecting lymphatic vessels rather than lymphatic capillaries. Podoplanin is expressed not only in lymphatic vessels, but also in stromal cells in the white pulp. These podoplanin-positive cells form fine meshworks surrounding the lymphatic vessels and central arteries. Following intravenous transplantation of lymphocytes positive for green fluorescent protein (GFP+) into normal recipient mice, donor cells appear in the meshworks within 1 h and accumulate in the lymphatic vessels within 6 h after injection. The GFP+ cells further accumulate in a draining celiac lymph node through the efferent lymphatic vessels from the hilum. These meshworks might therefore act as an extravascular lymphatic pathway and, together with ordinary lymphatic vessels, play a primary role in the cell traffic of the spleen, additional to the blood circulatory system.  相似文献   
996.

Background

We have previously shown that lung collectins, surfactant protein A (SP-A) and surfactant protein D, interact with Toll-like receptor (TLR) 2, TLR4, or MD-2. Bindings of lung collectins to TLR2 and TLR4/MD-2 result in the alterations of signaling through these receptors, suggesting the immunomodulatory functions of lung collectins. Mannose binding lectin (MBL) is another collectin molecule which has structural homology to SP-A. The interaction between MBL and TLRs has not yet been determined.

Methods

We prepared recombinant MBL, and analyzed its bindings to recombinant soluble forms of TLR4 (sTLR4) and MD-2.

Results

MBL bound to sTLR4 and MD-2. The interactions were Ca2+-dependent and inhibited by mannose or monoclonal antibody against the carbohydrate-recognition domain of MBL. Treatment of sTLR4 or MD-2 by peptide N-glycosidase F significantly decreased the binding of MBL. SP-A bound to deglycosylated sTLR4, and this property did not change in chimeric molecules of SP-A/MBL in which Glu195–Phe228 or Thr174–Gly194 of SP-A were replaced with the corresponding MBL sequences.

General Significance

These results suggested that MBL binds to TLR4 and MD-2 through the carbohydrate-recognition domain, and that oligosaccharide moieties of TLR4 and MD-2 are important for recognition by MBL. Since our previous studies indicated that lung collectins bind to the peptide portions of TLRs, MBL and lung collectins interact with TLRs by different mechanisms. These direct interactions between MBL and TLR4 or MD-2 suggest that MBL may modulate cellular responses by altering signals through TLRs.  相似文献   
997.
998.
In rice ( Oryza sativa ) seedlings, continuous white-light irradiation inhibited the growth of seminal roots but promoted the growth of crown roots. In this study, we examined the mechanisms of photoinhibition of seminal root growth. Photoinhibition occurred in the absence of nitrogen but increased with increasing nitrogen concentrations. In the presence of nitrogen, photoinhibition was correlated with coiling of the root tips. The seminal roots were most photosensitive 48–72 h after germination during the 7-day period after germination. White-light irradiation for at least 6 h was required for photoinhibition, and the Bunsen–Roscoe law of reciprocity was not observed. Experiments with phytochrome mutants showed that far-red light was perceived exclusively by phyA, red light was perceived by both phyA and phyB, and phyC had little or no role in growth inhibition or coiling of the seminal roots. These results also suggest that other blue-light photoreceptors are involved in growth inhibition of the seminal roots. Fluence-response curve analyses showed that phyA and phyB control very low-fluence response and low-fluence response, respectively, in the seminal roots. This was essentially the same as the growth inhibition previously observed at the late stage of coleoptile development (80 h after germination). The photoperceptive site for the root growth inhibition appeared to be the roots themselves. All three phytochrome species of rice were detected immunochemically in roots.  相似文献   
999.
Ozone produces reactive oxygen species and induces the synthesis of phytohormones, including ethylene and salicylic acid. These phytohormones act as signal molecules that enhance cell death in response to ozone exposure. However, some studies have shown that ethylene and salicylic acid can instead decrease the magnitude of ozone‐induced cell death. Therefore, we studied the defensive roles of ethylene and salicylic acid against ozone. Unlike the wild‐type, Col‐0, Arabidopsis mutants deficient in ethylene signaling (ein2) or salicylic acid biosynthesis (sid2) generated high levels of superoxide and exhibited visible leaf injury, indicating that ethylene and salicylic acid can reduce ozone damage. Macroarray analysis suggested that the ethylene and salicylic acid defects influenced glutathione (GSH) metabolism. Increases in the reduced form of GSH occurred in Col‐0 6 h after ozone exposure, but little GSH was detected in ein2 and sid2 mutants, suggesting that GSH levels were affected by ethylene or salicylic acid signaling. We performed gene expression analysis by real‐time polymerase chain reaction using genes involved in GSH metabolism. Induction of γ‐glutamylcysteine synthetase (GSH1), glutathione synthetase (GSH2), and glutathione reductase 1 (GR1) expression occurred normally in Col‐0, but at much lower levels in ein2 and sid2. Enzymatic activities of GSH1 and GSH2 in ein2 and sid2 were significantly lower than in Col‐0. Moreover, ozone‐induced leaf damage observed in ein2 and sid2 was mitigated by artificial elevation of GSH content. Our results suggest that ethylene and salicylic acid protect against ozone‐induced leaf injury by increasing de novo biosynthesis of GSH.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号