首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   15篇
  2023年   1篇
  2021年   4篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   1篇
  2015年   7篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   8篇
  2010年   3篇
  2009年   8篇
  2008年   8篇
  2007年   15篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1993年   3篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1973年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
111.
112.
The ECTOPICALLY PARTING CELLS 1 (EPC1) gene encodes a putative retaining glycosyltransferase of the GT64 family, and epc1-1 mutant plants have a severely dwarfed phenotype. A new mutant allele of this gene, epc1-2, has been isolated. Reduced cell adhesion that has previously been reported for the epc1-1 mutant was not observed for either the epc1-1 or epc1-2 mutants grown in our conditions, suggesting that EPC1 does not affect cell adhesion but is involved in some other process affecting plant growth and development. It is shown that the epc1-2 mutant exhibits hypersensitivity to the phytohormone abscisic acid in germination and root elongation assays, however it shows an unaltered response to gibberellin, epi-brassinosteroid, auxin, or ethylene. An EPC1:YFP fusion protein is localized to small motile structures within the cytosol that are similar in size and number to the Golgi apparatus. Analysis of cell wall pectins revealed that levels of beta-(1,4)-galactan in the epc1-2 mutant are reduced by 50%, whilst other pectic polysaccharides (homogalacturonan, arabinan, and rhamnogalacturonan II) are unchanged.  相似文献   
113.
114.
Cortinarius breviradicatus sp. nov., found in deciduous forests, is described and illustrated from Niigata, Japan. It is characterized by its medium-sized to large dark brown basidiocarp, acutely conical pileus, and rooting stipe, and by subglobose to broadly ellipsoid basidiospores. In addition, the extracting solution from its basidiocarps exhibits a strong fluorescence around 400–430 nm in ultraviolet radiation (250 nm), which was observed in a species of Cortinarius sect. Orellani. The new species belongs to the section Orellani. The differences between the new taxon and similar species are briefly discussed.  相似文献   
115.
We observed trees of the Japanese apricot, Prunus mume ‘Nanko’ (Rosaceae), bearing two types of flowers: 34% had blue fluorescent pollen under UV irradiation, and 66% had non-fluorescent pollen. The fluorescent pollen grains were abnormally crushed, sterile, and devoid of intine and pollenkitt. The development of microspores within anthers was investigated: in the abnormally developed anthers, tapetal cells were vacuolated at the unicellular microspore stage, and fluorescent pollen was produced. Compounds responsible for the blue fluorescence of pollen were identified as chlorogenic acid and 1-O-feruloyl-β-D-glucose. The anthers with fluorescent pollen contained 6.7-fold higher and 3.8-fold lower amounts of chlorogenic acid and N1,N5,N10-tri-p-coumaroylspermidine, respectively, compared to those with non-fluorescent pollen. The tapetal vacuolization, highly accumulated chlorogenic acid, and deficiency of N1,N5,N10-tri-p-coumaroylspermidine imply that low-temperature stress during the early unicellular microspore stage caused a failure in microsporogenesis. Furthermore, potential effects of the visual difference on the bee behavior were also discussed through the colorimetry. The sterility, likely induced by low-temperature stress, and the preference of honeybees for fluorescence may reduce the pollination efficiency of P. mume.  相似文献   
116.
Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.  相似文献   
117.
In mammals, the central clock (the suprachiasmatic nuclei, SCN) is entrained mainly by the light-dark cycle, whereas peripheral clocks in the peripheral tissues are entrained/synchronized by multiple factors, including feeding patterns and endocrine hormones such as glucocorticoids. Clock-mutant mice (Clock/Clock), which have a mutation in a core clock gene, show potent phase resetting in response to light pulses compared with wild-type (WT) mice, owing to the damped and flexible oscillator in the SCN. However, the phase resetting of the peripheral clocks in Clock/Clock mice has not been elucidated. Here, we characterized the peripheral clock gene synchronization in Clock/Clock mice by daily injections of a synthetic glucocorticoid (dexamethasone, DEX) by monitoring in vivo PER2::LUCIFERASE bioluminescence. Compared with WT mice, the Clock/Clock mice showed significantly decreased bioluminescence and peripheral clock rhythms with decreased amplitudes and delayed phases. In addition, the DEX injections increased the amplitudes and advanced the phases. In order to examine the robustness of the internal oscillator, T-cycle experiments involving DEX stimulations with 24- or 30-h intervals were performed. The Clock/Clock mice synchronized to the 30-h T-cycle stimulation, which suggested that the peripheral clocks in the Clock/Clock mice had increased synchronizing ability upon DEX stimulation, to that of circadian and hour-glass type oscillations, because of weak internal clock oscillators.  相似文献   
118.
119.
Differential subcellular localization of zinc in the rat retina.   总被引:5,自引:0,他引:5  
In the retina, zinc is believed to be a modulator of synaptic transmission and a constituent of metalloenzymes. To determine whether the intracellular localization of zinc correlates with function, we examined the localization of endogenous zinc in the rat retina using the silver amplification method. By light microscopy, reaction products were detected in the pigment epithelial cells (PE), the inner segment of photoreceptors (IS), the outer nuclear layer (ONL) and the inner nuclear layer (INL), the outer plexiform layer (OPL) and the inner plexiform layer (IPL), and the ganglion cell layer (GC). The heaviest accumulation of precipitate was observed in PE and IS, whereas only a little precipitate was found in GC. When the intracellular zinc was chelated with diethyldithiocarbamate, a small amount of precipitate was observed only in ONL. By electron microscopy, zinc was associated with three compartments. In OPL and IPL, zinc was associated with neural processes, while in PE, IS, INL, and GC it was associated with the Golgi apparatus. In ONL, zinc was associated with the nucleus. Zinc in the neural processes is believed to act as a modulator of synaptic transmission, and zinc associated with the Golgi apparatus is assumed to catalyze metalloenzyme reactions.  相似文献   
120.
Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号