首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   8篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
21.
22.
23.
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Kms of 9.1 mM for l-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.Halotolerance is of considerable interest scientifically and from the perspective of wide application in fermentation industries and in agriculture. When eubacteria are exposed to hyperosmotic stress, they accumulate various low-molecular-weight organic compounds, the so-called “compatible solutes” such as polyols, amino acids, sugars, and betaines (79, 13, 19, 48), because maintenance of turgor pressure is a prerequisite for growth under the conditions of elevated external osmotic pressure. Since Galinski et al. (14) discovered 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) as a compatible solute in Ectothiorhodospira halochloris, an extremely halophilic phototrophic eubacterium, ectoine has been found to be distributed widely in nature, largely in moderately halophilic eubacteria (3, 11, 12, 26, 38, 50). In addition, ectoine has been investigated as a new excellent universal osmoprotectant in this decade, since incorporation of external ectoine under hyperosmotic stress has been observed to confer protection on various nonhalotolerant eubacteria (16, 21, 44).We previously isolated a moderately halophilic eubacterium, Halomonas elongata (31), from dry salty land in Thailand. We identified ectoine and γ-N-acetyl-α,γ-diaminobutyric acid (ADABA), which is one of the cleavage structures of ectoine, as osmotically responding compounds in the cells grown in a glucose-mineral medium containing NaCl in a concentration range of 3 to 15% (31). To understand the accumulation mechanism of the intracellular ectoine, characterization of enzymes involved in the biosynthesis of ectoine is indispensable. Therefore, we have focused on the biosynthetic enzyme of ectoine in this organism. We observed that radioactivity from [1-14C]aspartate was most efficiently incorporated into ectoine and that the signal intensity was enriched preferentially from [1-13C]acetate into the methyl carbon at position 2′ and from [2-13C]acetate into the methine carbon at position 2 of the ectoine skeleton, respectively, in 13C nuclear magnetic resonance (NMR) spectroscopy (22). From these findings, we also hypothesized the following pathway essentially similar to that described by Peters et al. (34): aspartic β-semialdehyde (ASA) is converted to 2,4-diaminobutyric acid (DABA) by transamination, and DABA is converted to ADABA by acetylation with acetyl coenzyme A (CoA), which in turn yields ectoine by circularization (Fig. (Fig.1).1). The three enzymes involved in this pathway are DABA aminotransferase, DABA acetyltransferase, and ectoine synthase in order of the reactions to ectoine. Peters et al. (34) detected the activity of the first and the second of the three steps by using crude extracts of E. halochloris and H. elongata. However, the characterization of these enzymes was limited; in particular, their responses to various salt concentrations remained unknown. Open in a separate windowFIG. 1Proposed biosynthetic pathway of ectoine in H. elongata OUT30018.In this study, we confirmed the biosynthetic pathway of ectoine by using purified enzymes in H. elongata OUT30018 and characterized the three enzymes involved in the conversion of ASA to ectoine for the first time.  相似文献   
24.
In insects, egg activation is known to occur in vivo and independently of fertilization, but its mechanisms are poorly understood. To gain understanding of these mechanisms, an attempt was made to activate the egg of Gryllus bimaculatus in vitro. It was found that meiosis resumed and was completed in unfertilized eggs treated with hypotonic buffer. Early developmental processes in activated, unfertilized eggs were investigated and compared with those in fertilized eggs. Mitosis did not progress, resulting in formation of anucleate cytoplasmic islands (pseudoenergids). Development in the activated, unfertilized eggs stopped at this stage and both yolk subdivision and cellularization did not occur. To elucidate the role of the nucleus in the developmental process to the syncytial stage in fertilized eggs, eggs were treated with aphidicolin to inhibit DNA polymerization. It was found that pseudoenergids also formed in these aphidicolin-treated fertilized eggs. These results demonstrate that pseudoenergids can increase in number independently of nuclei, suggesting that the cytoplasm rather than the nucleus plays the primary role in development to the syncytial stage in G. bimaculatus.  相似文献   
25.
Transgenic insects have been artificially produced to study functions of interesting developmental genes, using insect transposons such as piggyBac. In the case of the cricket, however, transgenic animals have not yet been successfully artificially produced. In the present study, we examined whether the piggyBac transposon functions as a tool for gene delivery in embryos of Gryllus bimaculatus. We used either a piggyBac helper plasmid or a helper RNA synthesized in vitro as a transposase source. An excision assay revealed that the helper RNA was more effective in early Gryllus eggs to transpose a marker gene of eGFP than the helper plasmid containing the piggyBac transposase gene driven by the G. bimaculatus actin3/4 promoter. Further, only when the helper RNA was used, somatic transformation of the embryo with the eGFP gene was observed. These results suggest that the piggyBac system with the helper RNA may be effective for making transgenic crickets.  相似文献   
26.
27.
28.
The Hal3 protein of Saccharomyces cerevisiae inhibits the activity of PPZ1 type-1 protein phosphatases and functions as a regulator of salt tolerance and cell cycle control. In plants, two HAL3 homologue genes in Arabidopsis thaliana, AtHAL3a and AtHAl3b, have been isolated and the function of AtHAL3a has been investigated through the use of transgenic plants. Expressions of both AtHAL3 genes are induced by salt stress. AtHAL3a overexpressing transgenic plants exhibit improved salt and sorbitol tolerance. In vitro studies have demonstrated that AtHAL3 protein possessed 4'-phosphopantothenoylcysteine decarboxylase activity. This result suggests that the molecular function of plant HAL3 genes is different from that of yeast HAL3. To understand the function of plant HAL3 genes in salt tolerance more clearly, three tobacco HAL3 genes, NtHAL3a, NtHAL3b, and NtHAL3c, from Nicotiana tabacum were identified. NtHAL3 genes were constitutively expressed in all organs and under all conditions of stress examined. Overexpression of NtHAL3a improved salt, osmotic, and lithium tolerance in cultured tobacco cells. NtHAL3 genes could complement the temperature-sensitive mutation in the E. coli dfp gene encoding 4'-phosphopantothenoyl-cysteine decarboxylase in the coenzyme A biosynthetic pathway. Cells overexpressing NtHAL3a had an increased intracellular ratio of proline. Taken together, these results suggest that NtHAL3 proteins are involved in the coenzyme A biosynthetic pathway in tobacco cells.  相似文献   
29.
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) functions as a compatible osmolyte in the moderate halophile Halomonas elongata OUT30018. Ectoine is biosynthesized by three successive enzyme reactions from aspartic beta-semialdehyde. The genes encoding the enzymes involved in the biosynthesis, ectA, ectB, and ectC, encoding L-2,4-diaminobutyric acid acetyltransferase, L-2, 4-diaminobutyric acid transaminase, and L-ectoine synthase, respectively, have been previously cloned. To investigate the function of ectoine as a compatible solute in plant cells, the three genes were individually placed under the control of the cauliflower mosaic virus 35S promoter and introduced together into cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The transgenic BY2 cells accumulated a small quantity of ectoine (14-79 nmol g(-1) fresh weight) and showed increased tolerance to hyperosmotic shock (900 mOsm). Furthermore, the transgenic BY2 cells exhibited a normal growth pattern even under hyperosmotic conditions (up to 530 mOsm), in which the growth of the untransformed BY2 (wild type) cells was obviously delayed. These results suggest that genetically engineered synthesis of ectoine results in the increased hyperosmotic tolerance of cultured tobacco BY2 cells despite the low level of accumulation of the solute.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号