首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   29篇
  2022年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   21篇
  2012年   20篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   11篇
  2007年   17篇
  2006年   13篇
  2005年   28篇
  2004年   19篇
  2003年   14篇
  2002年   10篇
  2001年   10篇
  2000年   18篇
  1999年   6篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   8篇
  1990年   8篇
  1989年   3篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1967年   2篇
排序方式: 共有384条查询结果,搜索用时 531 毫秒
241.
Vascular endothelial growth factor (VEGF) that activates endothelial cell growth induces angiogenesis, which is indispensable to tumor igenesis and tumor progression. On the other hand, tumor suppressor gene p53 has been considered to regulate VEGF expression, but the detailed relationship between them remains unclear. In this study, we aimed to study VEGF expression in endometrial carcinoma cells and the effect of p53 gene transfection on VEGF expression using p53-mutated endometrial carcinoma cell line, HEC-50B. Immunoblotting for detecting VEGF protein, p53 protein and beta-actin was performed using 11 endometrial carcinoma cell lines. Levels of VEGF in the cultured media were measured by Enzyme immunoassay(EIA). Transfection of wild p53 gene was carried out by SuperFect method in HEC-50B cells, which had mutant p53 gene and did not express p53 protein. The results of immunoblotting were analyzed by NIH image and expressed as values. The results of EIA were expressed as the relative value. The VEGF value was 0.8 +/- 0.3 (n = 6) in p53-wild group, whereas in p53-mutant group it was 1.6 +/- 0.8 (n = 5). VEGF expression was correlated significantly with p53 status (P < 0.05). VEGF levels in p53 gene-transfected cells and the conditioned medium were decreased in 48 hours after p53 gene transfection. VEGF expression was down-regulated by p53 in endometrial carcinoma cells.  相似文献   
242.
Lactobacillus casei allosteric L-lactate dehydrogenase (L-LDH) absolutely requires fructose 1,6-bisphosphate [Fru(1,6)P2] for its catalytic activity under neutral conditions, but exhibits marked catalytic activity in the absence of Fru(1,6)P(2) under acidic conditions through the homotropic activation effect of substrate pyruvate. In this enzyme, a single amino acid replacement, i.e. that of His205 conserved in the Fru(1,6)P(2)-binding site of certain allosteric L-LDHs of lactic acid bacteria with Thr, did not induce a marked loss of the activation effect of Fru(1,6)P(2) or divalent metal ions, which are potent activators that improve the activation function of Fru(1,6)P(2) under neutral conditions. However, this replacement induced a great loss of the Fru(1,6)P(2)-independent activation effect of pyruvate or pyruvate analogs under acidic conditions, consequently indicating an absolute Fru(1,6)P(2) requirement for the enzyme activity. The replacement also induced a significant reduction in the pH-dependent sensitivity of the enzyme to Fru(1,6)P(2), through a slight decrease and increase of the Fru(1,6)P(2) sensitivity under acidic and neutral conditions, respectively, indicating that His205 is also largely involved in the pH-dependent sensitivity of L.casei L-LDH to Fru(1,6)P(2). The role of His205 in the allosteric regulation of the enzyme is discussed on the basis of the known crystal structures of L-LDHs.  相似文献   
243.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   
244.
Pretreatment with a mild irritant such as 1 M NaCl prevented ethanol-induced mucosal injury, which was abolished by indomethacin, suggesting involvement of endogenous PGs. With the use of intravital microscopy, we investigated the mechanism in microcirculation whereby a mild irritant prevents ethanol-induced mucosal injury. Microcirculation of the basal part of gastric mucosa in anesthetized rats was observed through a window with transillumination. Diameters of arterioles, collecting venules, and venules were measured with an electric microscaler. One molar NaCl alone caused dilation of arterioles and constrictions of collecting venules and venules, which were inhibited by indomethacin. Ethanol (50%) applied to mucosa constricted collecting venules and venules but dilated arterioles. Constriction of collecting venules resulted in mucosal congestion. Pretreatment with 1 M NaCl inhibited ethanol-induced constrictions of collecting venules and venules, and administration of indomethacin or a calcitonin gene-related peptide (CGRP) antagonist, CGRP-(8-37), abolished elimination of constrictions. Topical application (1 nM-10 microM) of PGE2 or beraprost sodium (a PGI2 analog) to microvasculature markedly and dose-dependently dilated arterioles, whereas that of PGE2, but not beraprost, slightly constricted collecting venules. Pretreatment of microvasculature with a nonvasoactive concentration of PGE2 (100 nM) or beraprost (1 nM) completely inhibited ethanol-induced constriction of collecting venules. The inhibitory effect of beraprost but not of PGE2 was abolished by CGRP-(8-37). Present results suggest that the mechanism whereby 1 M NaCl prevents ethanol-induced injury is elimination of constrictions of collecting venules and venules by CGRP whose release may be enhanced by PGI2 but not by PGE2.  相似文献   
245.
We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.  相似文献   
246.
Tyrosyl-tRNA synthetase (TyrRS) has been studied extensively by mutational and structural analyses to elucidate its catalytic mechanism. TyrRS has the HIGH and KMSKS motifs that catalyze the amino acid activation with ATP. In the present study, the crystal structures of the Escherichia coli TyrRS catalytic domain, in complexes with l-tyrosine and a l-tyrosyladenylate analogue, Tyr-AMS, were solved at 2.0A and 2.7A resolution, respectively. In the Tyr-AMS-bound structure, the 2'-OH group and adenine ring of the Tyr-AMS are strictly recognized by hydrogen bonds. This manner of hydrogen-bond recognition is conserved among the class I synthetases. Moreover, a comparison between the two structures revealed that the KMSKS loop is rearranged in response to adenine moiety binding and hydrogen-bond formation, and the KMSKS loop adopts the more compact ("semi-open") form, rather than the flexible, open form. The HIGH motif initially recognizes the gamma-phosphate, and then the alpha and gamma-phosphates of ATP, with a slight rearrangement of the residues. The other residues around the substrate also accommodate the Tyr-AMS. This induced-fit form presents a novel "snapshot" of the amino acid activation step in the aminoacylation reaction by TyrRS. The present structures and the T.thermophilus TyrRS ATP-free and bound structures revealed that the extensive induced-fit conformational changes of the KMSKS loop and the local conformational changes within the substrate binding site form the basis for driving the amino acid activation step: the KMSKS loop adopts the open form, transiently shifts to the semi-open conformation according to the adenosyl moiety binding, and finally assumes the rigid ATP-bound, closed form. After the amino acid activation, the KMSKS loop adopts the semi-open form again to accept the CCA end of tRNA for the aminoacyl transfer reaction.  相似文献   
247.
Genotoxicity is one of the important endpoints for risk assessment of environmental chemicals. Many short-term assays to evaluate genotoxicity have been developed and some of them are being used routinely. Although these assays can generally be completed within a short period, their throughput is not sufficient to assess the huge number of chemicals, which exist in our living environment without information on their safety. We have evaluated three commercially available in silico systems, i.e., DEREK, MultiCASE, and ADMEWorks, to assess chemical genotoxicity. We applied these systems to the 703 chemicals that had been evaluated by the Salmonella/microsome assay from CGX database published by Kirkland et al. We also applied these systems to the 206 existing chemicals in Japan that were recently evaluated using the Salmonella/microsome assay under GLP compliance (ECJ database). Sensitivity (the proportion of the positive in Salmonella/microsome assay correctly identified by the in silico system), specificity (the proportion of the negative in Salmonella/microsome assay correctly identified) and concordance (the proportion of correct identifications of the positive and the negative in Salmonella/microsome assay) were increased when we combined the three in silico systems to make a final decision in mutagenicity, and accordingly we concluded that in silico evaluation could be optimized by combining the evaluations from different systems. We also investigated whether there was any correlation between the Salmonella/microsome assay result and the molecular weight of the chemicals: high molecular weight (>3000) chemicals tended to give negative results. We propose a decision tree to assess chemical genotoxicity using a combination of the three in silico systems after pre-selection according to their molecular weight.  相似文献   
248.
249.
250.
The role of inducible nitric oxide synthase (iNOS) in the progression of fibrosis during nonalcoholic steatohepatitis remains to be elucidated. This study examined the role of iNOS in the progression of fibrosis during steatohepatitis by comparing iNOS knockout (iNOS(-/-)) and wild-type (iNOS(+/+)) mice that were fed a high-fat diet. Severe fatty metamorphosis developed in the liver of iNOS(+/+) and iNOS(-/-) mice. Fibrotic changes were marked in iNOS(-/-) mice. Gelatin zymography showed that pro MMP-2 and pro MMP-9 protein expressions were more highly induced in iNOS(+/+) mice than in iNOS(-/-) mice. Active forms of MMP-2 and MMP-9 were clearly present only in the liver tissue of iNOS(+/+) mice. In situ zymography showed strong gelatinolytic activities in the liver tissue of iNOS(+/+) mice, but only spotty activity in iNOS(-/-)mice. iNOS may attenuate the progression of liver fibrosis in steatohepatitis, in part by inducing MMP-2 and MMP-9 expression and augmenting their activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号