首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   22篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   8篇
  2013年   17篇
  2012年   10篇
  2011年   9篇
  2010年   17篇
  2009年   6篇
  2008年   12篇
  2007年   11篇
  2006年   21篇
  2005年   13篇
  2004年   14篇
  2003年   15篇
  2002年   19篇
  2001年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1968年   1篇
排序方式: 共有227条查询结果,搜索用时 62 毫秒
101.
Karrikins are butenolide compounds present in post‐fire environments that can stimulate seed germination in many species, including Arabidopsis thaliana. Plants also produce endogenous butenolide compounds that serve as hormones, namely strigolactones (SLs). The receptor for karrikins (KARRIKIN INSENSITIVE 2; KAI2) and the receptor for SLs (DWARF14; D14) are homologous proteins that share many similarities. The mode of action of D14 as a dual enzyme receptor protein is well established, but the nature of KAI2‐dependent signalling and its function as a receptor are not fully understood. To expand our knowledge of how KAI2 operates, we screened ethyl methanesulphonate (EMS)‐mutagenized populations of A. thaliana for mutants with kai2‐like phenotypes and isolated 13 new kai2 alleles. Among these alleles, kai2‐10 encoded a D184N protein variant that was stable in planta. Differential scanning fluorimetry assays indicated that the KAI2 D184N protein could interact normally with bioactive ligands. We developed a KAI2‐active version of the fluorescent strigolactone analogue Yoshimulactone Green to show that KAI2 D184N exhibits normal rates of ligand hydrolysis. KAI2 D184N degraded in response to treatment with exogenous ligands, suggesting that receptor degradation is a consequence of ligand binding and hydrolysis, but is insufficient for signalling activity. Remarkably, KAI2 D184N degradation was hypersensitive to karrikins, but showed a normal response to strigolactone analogues, implying that these butenolides may interact differently with KAI2. These results demonstrate that the enzymatic and signalling functions of KAI2 can be decoupled, and provide important insights into the mechanistic events that underpin butenolide signalling in plants.  相似文献   
102.
103.
104.
We have examined the role of gibberellins (GAs) in plant development by expression of the pea GA 2-oxidase2 ( PsGA2ox2 ) cDNA, which encodes a GA inactivating enzyme, under the control of the MEDEA (MEA) promoter. Expression of MEA:PsGA2ox2 in Arabidopsis caused seed abortion, demonstrating that active GAs in the endosperm are essential for normal seed development. MEA:PsGA2ox2 plants had reduced ovule number per ovary and exhibited defects in phyllotaxy and leaf morphology which were partly suppressed by GA treatment. The leaf architecture and phyllotaxy defects of MEA:PsGA2ox2 plants were also restored by sly1-d which reduces DELLA protein stability to increase GA response. MEA:PsGA2ox2 seedlings had increased expression of the KNOTTED1 -like homeobox (KNOX) genes, BP , KNAT2 and KNAT6 , which are known to control plant architecture. The expression of KNOX genes is also altered in wild-type plants treated with GA. These results support the conclusion that GAs can suppress the effects of elevated KNOX gene expression, and raise the possibility that localized changes in GA levels caused by PsGA2ox2 alter the expression of KNOX genes to modify plant architecture.  相似文献   
105.
Axons in the adult mammalian central nervous system (CNS) exhibit little regeneration after injury. It has been suggested that several axonal growth inhibitors prevent CNS axonal regeneration. Recent research has demonstrated that semaphorin3A (Sema3A) is one of the major inhibitors of axonal regeneration. We identified a strong and selective inhibitor of Sema3A, SM-216289, from the fermentation broth of a fungal strain. To examine the effect of SM-216289 in vivo, we transected the spinal cord of adult rats and administered SM-216289 into the lesion site for 4 weeks. Rats treated with SM-216289 showed substantially enhanced regeneration and/or preservation of injured axons, robust Schwann cell-mediated myelination and axonal regeneration in the lesion site, appreciable decreases in apoptotic cell number and marked enhancement of angiogenesis, resulting in considerably better functional recovery. Thus, Sema3A is essential for the inhibition of axonal regeneration and other regenerative responses after spinal cord injury (SCI). These results support the possibility of using Sema3A inhibitors in the treatment of human SCI.  相似文献   
106.
Surface albedo (α) and aerodynamic roughness length (z 0), which partition surface net radiation into energy fluxes, are critical land surface properties for biosphere–atmosphere interactions and climate variability. Previous studies suggested that canopy structure parameters influence both α and z 0; however, no field data have been reported to quantify their relationships. Here, we hypothesize that a functional relationship between α and z 0 exists for a vegetated surface, since both land surface parameters can be conceptually related to the characteristics of canopy structure. We test this hypothesis by using the observed data collected from 50 site-years of field measurements from sites worldwide covering various vegetated surfaces. On the basis of these data, a negative linear relationship between α and log(z 0) was found, which is related to the canopy structural parameter. We believe that our finding is a big step toward the estimation of z 0 with high accuracy. This can be used, for example, in the parameterization of land properties and the observation of z 0 using satellite remote sensing.  相似文献   
107.
A characteristic feature of tissue resident human mast cells (MCs) is their hTryptase-β-rich cytoplasmic granules. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and we have shown that this tetramer-forming tryptase has beneficial roles in innate immunity but adverse roles in inflammatory disorders like experimental arthritis. Because the key tissue factors that control tryptase expression in MCs have not been identified, we investigated the mechanisms by which fibroblasts mediate the expression and granule accumulation of mMCP-6. Immature mouse bone marrow-derived MCs (mBMMCs) co-cultured with fibroblast-like synoviocytes (FLS) or mouse 3T3 fibroblasts markedly increased their levels of mMCP-6. This effect was caused by an undefined soluble factor whose levels could be increased by exposing FLS to tumor necrosis factor-α or interleukin (IL)-1β. Gene expression profiling of mBMMCs and FLS for receptor·ligand pairs of potential relevance raised the possibility that IL-33 was a sought after fibroblast-derived factor that promotes tryptase expression and granule maturation via its receptor IL1RL1/ST2. MCs lacking IL1RL1 exhibited defective fibroblast-driven tryptase accumulation, whereas recombinant IL-33 induced mMCP-6 mRNA and protein accumulation in wild-type mBMMCs. In agreement with these data, synovial MCs from IL1RL1-null mice exhibited a marked reduction in mMCP-6 expression. IL-33 is the first factor shown to modulate tryptase expression in MCs at the mRNA and protein levels. We therefore have identified a novel pathway by which mesenchymal cells exposed to inflammatory cytokines modulate the phenotype of local MCs to shape their immune responses.  相似文献   
108.
The regular arrangement of leaves and flowers around a plant''s stem is a fascinating expression of biological pattern formation. Based on current models, the spacing of lateral shoot organs is determined by transient local auxin maxima generated by polar auxin transport, with existing primordia draining auxin from their vicinity to restrict organ formation close by. It is unclear whether this mechanism encodes not only spatial information but also temporal information about the plastochron (i.e., the interval between the formation of successive primordia). Here, we identify the Arabidopsis thaliana F-box protein SLOW MOTION (SLOMO) as being required for a normal plastochron. SLOMO interacts genetically with components of polar auxin transport, and mutant shoot apices contain less free auxin. However, this reduced auxin level at the shoot apex is not due to increased polar auxin transport down the stem, suggesting that it results from reduced synthesis. Independently reducing the free auxin level in plants causes a similar lengthening of the plastochron as seen in slomo mutants, suggesting that the reduced auxin level in slomo mutant shoot apices delays the establishment of the next auxin maximum. SLOMO acts independently of other plastochron regulators, such as ALTERED MERISTEM PROGRAM1 or KLUH/CYP78A5. We propose that SLOMO contributes to auxin homeostasis in the shoot meristem, thus ensuring a normal rate of the formation of auxin maxima and organ initiation.  相似文献   
109.
The theanine content of the leaves of 27 species or varieties of Theaceae plants was investigated. Theanine was present in 21 species or varieties, but in much lower amounts (<0.2 μmol/g fresh weight) than the quantity detected in Camellia sinensis var. sinensis. The major free amino acids in leaves of four species belonging to the genera Schima and Eurya, were glutamic acid, aspartic acid, glutamine, asparagine, alanine and proline and content of these amino acids is similar to or higher than theanine. Accumulation of free amino acids in these plants was generally lower than in C. sinensis var. sinensis. The biosynthetic activity of theanine, assessed by the incorporation of radioactivity from [14C]ethylamine, was detected in seedlings of two species of Schima. The theanine biosynthetic activity in roots was higher than that of leaves.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号