首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2575篇
  免费   165篇
  国内免费   1篇
  2023年   4篇
  2022年   13篇
  2021年   33篇
  2020年   15篇
  2019年   35篇
  2018年   48篇
  2017年   35篇
  2016年   50篇
  2015年   82篇
  2014年   111篇
  2013年   196篇
  2012年   162篇
  2011年   204篇
  2010年   115篇
  2009年   110篇
  2008年   195篇
  2007年   178篇
  2006年   178篇
  2005年   148篇
  2004年   159篇
  2003年   152篇
  2002年   149篇
  2001年   20篇
  2000年   25篇
  1999年   34篇
  1998年   32篇
  1997年   26篇
  1996年   18篇
  1995年   14篇
  1994年   22篇
  1993年   17篇
  1992年   22篇
  1991年   16篇
  1990年   17篇
  1989年   17篇
  1988年   21篇
  1987年   12篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1959年   1篇
排序方式: 共有2741条查询结果,搜索用时 15 毫秒
951.
Intravital visualization of thrombopoiesis revealed that formation of proplatelets, which are cytoplasmic protrusions in bone marrow megakaryocytes (MKs), is dominant in the steady state. However, it was unclear whether this is the only path to platelet biogenesis. We have identified an alternative MK rupture, which entails rapid cytoplasmic fragmentation and release of much larger numbers of platelets, primarily into blood vessels, which is morphologically and temporally different than typical FasL-induced apoptosis. Serum levels of the inflammatory cytokine IL-1α were acutely elevated after platelet loss or administration of an inflammatory stimulus to mice, whereas the MK-regulator thrombopoietin (TPO) was not elevated. Moreover, IL-1α administration rapidly induced MK rupture–dependent thrombopoiesis and increased platelet counts. IL-1α–IL-1R1 signaling activated caspase-3, which reduced plasma membrane stability and appeared to inhibit regulated tubulin expression and proplatelet formation, and ultimately led to MK rupture. Collectively, it appears the balance between TPO and IL-1α determines the MK cellular programming for thrombopoiesis in response to acute and chronic platelet needs.  相似文献   
952.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   
953.
954.
Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period.  相似文献   
955.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus   总被引:2,自引:0,他引:2  
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.  相似文献   
956.
Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit+ stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit+ stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.  相似文献   
957.
Although stem cells are generally thought to be resistant to oxidative stress, the fact and in detail molecular mechanism are still to be clearly identified. We herein tried to understand the overall characterization of redox regulatory signaling in hematopoietic stem cells. We purified c-kit-positive hematopoietic stem/progenitor cells from the bone marrow of healthy mice, and then evaluated their redox regulatory property. Compared to the c-kit-negative matured mononuclear cells, c-kit-positive stem/progenitor cells showed lower basic levels of intracellular reactive oxygen species, faster clearance of the accumulated intracellular reactive oxygen species, and higher resistant to oxidative stress. An overall view on the gene expression profile associated with redox regulation showed to be widely differed between cell types. We confirmed that the c-kit-positive stem/progenitor cells expressed significantly higher of Nox1 and catalase, but less of lactoperoxidase than these matured mononuclear cells. Our data suggests that stem cells keep specific redox regulatory property for defensing against oxidative stress.  相似文献   
958.
N-Acetyltransferase from Chryseobacterium sp. strain 5-3B is an acetyl coenzyme A (acetyl-CoA)-dependent enzyme that catalyzes the enantioselective transfer of an acetyl group from acetyl-CoA to the amino group of l-2-phenylglycine to produce (2S)-2-acetylamino-2-phenylacetic acid. We purified the enzyme from strain 5-3B and deduced the N-terminal amino acid sequence. The gene, designated natA, was cloned with two other hypothetical protein genes; the three genes probably form a 2.5-kb operon. The deduced amino acid sequence of NatA showed high levels of identity to sequences of putative N-acetyltransferases of Chryseobacterium spp. but not to other known arylamine and arylalkylamine N-acetyltransferases. Phylogenetic analysis indicated that NatA forms a distinct lineage from known N-acetyltransferases. We heterologously expressed recombinant NatA (rNatA) in Escherichia coli and purified it. rNatA showed high activity for l-2-phenylglycine and its chloro- and hydroxyl-derivatives. The Km and Vmax values for l-2-phenylglycine were 0.145 ± 0.026 mM and 43.6 ± 2.39 μmol · min−1 · mg protein−1, respectively. The enzyme showed low activity for 5-aminosalicylic acid and 5-hydroxytryptamine, which are reported as good substrates of a known arylamine N-acetyltransferase and an arylalkylamine N-acetyltransferase. rNatA had a comparatively broad acyl donor specificity, transferring acyl groups to l-2-phenylglycine and producing the corresponding 2-acetylamino-2-phenylacetic acids (relative activity with acetyl donors acetyl-CoA, propanoyl-CoA, butanoyl-CoA, pentanoyl-CoA, and hexanoyl-CoA, 100:108:122:10:<1).  相似文献   
959.
When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (= dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号