首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2504篇
  免费   160篇
  国内免费   1篇
  2665篇
  2023年   6篇
  2022年   14篇
  2021年   32篇
  2020年   14篇
  2019年   34篇
  2018年   46篇
  2017年   35篇
  2016年   50篇
  2015年   81篇
  2014年   109篇
  2013年   185篇
  2012年   159篇
  2011年   195篇
  2010年   112篇
  2009年   109篇
  2008年   189篇
  2007年   176篇
  2006年   177篇
  2005年   147篇
  2004年   158篇
  2003年   150篇
  2002年   147篇
  2001年   14篇
  2000年   22篇
  1999年   33篇
  1998年   32篇
  1997年   25篇
  1996年   15篇
  1995年   12篇
  1994年   21篇
  1993年   17篇
  1992年   21篇
  1991年   16篇
  1990年   16篇
  1989年   15篇
  1988年   20篇
  1987年   10篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1959年   1篇
排序方式: 共有2665条查询结果,搜索用时 15 毫秒
991.
992.
Several epidemiological studies and animal experiments showed that 2,4,6-trinitrotoluene (TNT), a commonly used explosive, induced reproductive toxicity. To clarify whether the toxicity results from the interference of endocrine systems or direct damage to reproductive organs, we examined the effects of TNT on the male reproductive system in Fischer 344 rats. TNT administration induced germ cell degeneration, the disappearance of spermatozoa in seminiferous tubules, and a dramatic decrease in the sperm number in both the testis and epididymis. TNT increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in sperm whereas plasma testosterone levels did not decrease. These results suggest that TNT-induced toxicity is derived from direct damage to spermatozoa rather than testosterone-dependent mechanisms. To determine the mechanism of 8-oxodG formation in vivo , we examined DNA damage induced by TNT and its metabolic products in vitro . 4-Hydroxylamino-2,6-dinitrotoluene, a TNT metabolite, induced Cu(II)-mediated damage to 32 P-labeled DNA fragments and increased 8-oxodG formation in calf thymus DNA, although TNT itself did not. DNA damage was enhanced by NADH, suggesting that NADH-mediated redox reactions involving TNT metabolites enhanced toxicity. Catalase and bathocuproine inhibited DNA damage, indicating the involvement of H 2 O 2 and Cu(I). These findings suggest that TNT induces reproductive toxicity through oxidative DNA damage mediated by its metabolite. We propose that oxidative DNA damage in the testis plays a role in reproductive toxicity induced by TNT and other nitroaromatic compounds.  相似文献   
993.
Summary A Saccharomyces cerevisiae strain harbouring the recombinant plasmid pSMF38TMA was cultured in a jar fermentor under the control of glucose concentration. In the recombinant plasmid, the mouse -amylase gene was fused to the S. cerevisiae SUC2 promoter. When glucose concentration in the medium was controlled at 10 g/l, the gene expression was completely repressed. On the other hand, the -amylase was produced and secreted in the medium at a very high level, around 200 mg/l as evaluated from the specific activity of commercially available human salivary amylase, when the glucose was kept at 0.15 g/l. This amount was almost 20-fold that obtained at 10 g/l glucose. The specific growth rate of the yeast in this culture was almost 60% of that attained with 10 g/l glucose. To obtain higher cell growth and productivity, the yeast was at first cultured at 2 g/l glucose and the concentration was then lowered to 0.15 g/l. By this control of the glucose concentration, on-off regulation of gene expression from the SUC promoter could be attained.  相似文献   
994.
Increased oxidative stress has been associated with obesity-related disorders. In this study, we investigated how oxidative stress, in different ways of exposure, regulates gene expression of various adipokines in 3T3-L1 adipocytes. Exposure to 100-500microM H(2)O(2) for 10min, as well as exposure to 5-25mU/ml glucose oxidase for 18h, similarly decreased adiponectin, leptin, and resistin mRNAs, and increased plasminogen activator inhibitor-1 mRNA. Secretion levels of adipokines were also changed by oxidative stress in parallel with mRNA expression levels. Although a peak increase in plasminogen activator inhibitor-1 mRNA was achieved between 4 and 8h after exposure to H(2)O(2) for 10min, significant decreases in adiponectin and resistin mRNA were observed after 16h, while leptin mRNA was decreased earlier. Our results suggest that oxidative stress, even of short duration, has a significant impact on the regulation of various adipokine gene expressions favoring atherosclerosis.  相似文献   
995.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   
996.
A milk membrane glycoprotein, MFG-E8 [milk fat globule-EGF (epidermal growth factor) factor 8], is expressed abundantly in lactating mammary glands in stage- and tissue-specific manners, and has been believed to be secreted in association with milk fat globules. In the present paper, we describe further up-regulation of MFG-E8 in involuting mammary glands, where the glands undergo a substantial increase in the rate of epithelial cell apoptosis, and a possible role of MFG-E8 in mediating recognition and engulfment of apoptotic cells through its specific binding to PS (phosphatidylserine). Immunoblotting and RNA blotting analyses revealed that both MFG-E8 protein and MFG-E8 mRNA were markedly increased in mammary tissue within 3 days of either natural or forced weaning (pup withdrawal) of lactating mice. Using immunohistochemical analysis of the mammary tissue cryosections, the MFG-E8 signal was detected around the epithelium of such involuting mammary glands, but was almost undetectable at early- and mid-lactation stages, although strong signals were obtained for milk fat globules stored in the alveolar lumen. Some signals double positive to a macrophage differentiation marker, CD68, and MFG-E8 were detected in the post-weaning mammary tissue, although such double-positive signals were much smaller in number than the MFG-E8 single-positive ones. Total MFG-E8 in milk was also increased in the post-weaning mammary glands and, furthermore, the free MFG-E8 content in the post-weaning milk, as measured by in vitro PS-binding and apoptotic HC11 cell-binding activities, was much higher than that of lactation. In addition, the post-weaning milk enhanced the binding of apoptotic HC11 cells to J774 macrophages. Sucrose density-gradient ultracentrifugation analyses revealed that such enhanced PS-binding activity of MFG-E8 was present in membrane vesicle fractions (density 1.05-1.13 g/ml), rather than milk fat globule fractions. The weaning-induced MFG-E8 might play an important role in the recognition and engulfment of apoptotic epithelial cells by the neighbouring phagocytic epithelial cells in involuting mammary glands.  相似文献   
997.
The effects of sea salts, NaCl, KCl, MgCl2, MgSO4, and CaCl2, on the growth of protoplast cultures of two mangrove species, Sonneratia alba and Avicennia alba, were investigated using 96-well culture plates. Plants of these two species naturally grow at the seaward side of a mangrove forest. Cotyledon protoplasts of S. alba showed halophilic nature to NaCl, KCl, and MgCl2 at low concentrations (10–50 mM) when cultured in Murashige and Skoog’s (MS) medium containing 0.6 M mannitol. CaCl2 at a concentration higher than 25 mM was inhibitory to cell growth. On the other hand, in protoplast culture of A. alba suspension cells, which were induced from cotyledon tissues, in the modified amino acid (mAA) medium containing 1.2 M sorbitol, tolerance to NaCl, MgCl2 and MgSO4 were observed at a wide range of concentrations up to 400 mM. CaCl2 was always inhibitory for cell divisions in A. alba, but stimulatory for spherical enlargement of cells. However, no difference in cell enlargement was observed among other salts. Similarity and difference in reactivity to salts between protoplasts and suspension cells from our previous studies were discussed in relation to the site of salt tolerance or halophilic adaptation within mangrove cells. For protoplast cultures, the site(s) for response of S. alba and A. alba are located in the cytoplasm and/or the cell membrane.  相似文献   
998.
Telomerase is a ribonucleoprotein with an intrinsic telomerase RNA (TER) component. Within yeasts, TER is remarkably large and presents little similarity in secondary structure to vertebrate or ciliate TERs. To better understand the evolution of fungal telomerase, we identified 74 TERs from Pezizomycotina and Taphrinomycotina subphyla, sister clades to budding yeasts. We initially identified TER from Neurospora crassa using a novel deep-sequencing–based approach, and homologous TER sequences from available fungal genome databases by computational searches. Remarkably, TERs from these non-yeast fungi have many attributes in common with vertebrate TERs. Comparative phylogenetic analysis of highly conserved regions within Pezizomycotina TERs revealed two core domains nearly identical in secondary structure to the pseudoknot and CR4/5 within vertebrate TERs. We then analyzed N. crassa and Schizosaccharomyces pombe telomerase reconstituted in vitro, and showed that the two RNA core domains in both systems can reconstitute activity in trans as two separate RNA fragments. Furthermore, the primer-extension pulse-chase analysis affirmed that the reconstituted N. crassa telomerase synthesizes TTAGGG repeats with high processivity, a common attribute of vertebrate telomerase. Overall, this study reveals the common ancestral cores of vertebrate and fungal TERs, and provides insights into the molecular evolution of fungal TER structure and function.  相似文献   
999.
Mizuarai S  Kotani H 《Human genetics》2010,128(6):567-575
Synthetic lethal interaction is defined as a combination of two mutations that is lethal when present in the same cell; each individual mutation is non-lethal. Synthetic lethal interactions attract attention in cancer research fields since the discovery of synthetic lethal genes with either oncogenes or tumor suppressor genes (TSGs) provides novel cancer therapeutic targets. Due to the selective lethal effect on cancer cells harboring specific genetic alterations, it is expected that targeting synthetic lethal genes would provide wider therapeutic windows compared with cytotoxic chemotherapeutics. Here, we review the current status of the application of synthetic lethal screening in cancer research fields from biological and methodological viewpoints. Very recent studies seeking to identify synthetic lethal genes with K-RAS and p53, which are known to be the most frequently occurring oncogenes and TSGs, respectively, are introduced. Among the accumulating amount of research on synthetic lethal interactions, the synthetic lethality between BRCA1/2 and PARP1 inhibition has been clinically proven. Thus, both preclinical and clinical data showing a preferential anti-tumor effect on BRCA1/2 deficient tumors by a PARP1 inhibitor are the best examples of the synthetic lethal approach of cancer therapeutics. Finally, methodological progress regarding synthetic lethal screening, including barcode shRNA screening and in vivo synthetic lethal screening, is described. Given the fact that an increasing number of synthetic lethal genes for major cancerous genes have been validated in preclinical studies, this intriguing approach awaits clinical verification of preferential benefits for cancer patients with specific genetic alterations as a clear predictive factor for tumor response.  相似文献   
1000.
Our previous studies on a β1,6-N-acetylglucosaminyltransferase, GnT-IX (GnT-Vb), a homolog of GnT-V, indicated that the enzyme has a broad GlcNAc transfer activity toward N-linked and O-mannosyl glycan core structures and that its brain-specific gene expression is regulated by epigenetic histone modifications. In this study, we demonstrate the existence of an endogenous inhibitory factor for GnT-IX that functions as a key regulator for GnT-IX enzymatic activity in Neuro2a (N2a) cells. We purified this factor from N2a cells and found that it is identical to ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3), as evidenced by mass spectrometry and by the knockdown and overexpression of ENPP3 in cultured cells. Kinetic analyses revealed that the mechanism responsible for the inhibition of GnT-IX caused by ENPP3 is the ENPP3-mediated hydrolysis of the nucleotide sugar donor substrate, UDP-GlcNAc, with the resulting generation of UMP, a potent and competitive inhibitor of GnT-IX. Indeed, ENPP3 knockdown cells had significantly increased levels of intracellular nucleotide sugars and displayed changes in the total cellular glycosylation profile. In addition to chaperones or other known regulators of glycosyltransferases, the ENPP3-mediated hydrolysis of nucleotide sugars would have widespread and significant impacts on glycosyltransferase activities and would be responsible for altering the total cellular glycosylation profile and modulating cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号