首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   50篇
  623篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   11篇
  2018年   5篇
  2017年   13篇
  2016年   12篇
  2015年   25篇
  2014年   21篇
  2013年   38篇
  2012年   42篇
  2011年   54篇
  2010年   21篇
  2009年   29篇
  2008年   46篇
  2007年   41篇
  2006年   33篇
  2005年   45篇
  2004年   25篇
  2003年   26篇
  2002年   31篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   10篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
81.
Bio-assay guided fractionation of an acetone extract of leaf material from Plectranthus saccatus Benth. resulted in the isolation of a beyerane diterpenoid. This compound, characterised by spectroscopic methods as ent-3beta-(3-methyl-2-butenoyl)oxy-15-beyeren-19-oic acid, showed insect antifeedant activity against Spodoptera littoralis. Known quinonoid abietane diterpenoids obtained from new sources included a mixture of the (4R,19R) and (4R,19S) diastereoisomers of coleon A from P. aff. puberulentus J.K. Morton, coleon A lactone from P. puberulentus J.K. Morton, and coleon U and coleon U quinone from P. forsteri 'Marginatus' Benth. These compounds, and the crude acetone extracts from the leaf surfaces of 11 species of Plectranthus, were tested for antifeedant activity against S. littoralis, antibacterial activity against Bacillus subtilis and Pseudomonas syringae and antifungal activity against Cladosporium herbarum. The coleon A mixture showed potent antifeedant activity against S. littoralis, whereas coleon U showed the greatest antimicrobial activity.  相似文献   
82.
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.  相似文献   
83.
84.
A widely held view is that directional movement of tRNA in the ribosome is determined by an intrinsic mechanism and driven thermodynamically by transpeptidation. Here, we show that, in certain ribosomal complexes, the pretranslocation (PRE) state is thermodynamically favored over the posttranslocation (POST) state. Spontaneous and efficient conversion from the POST to PRE state is observed when EF-G is depleted from ribosomes in the POST state or when tRNA is added to the E site of ribosomes containing P-site tRNA. In the latter assay, the rate of tRNA movement is increased by streptomycin and neomycin, decreased by tetracycline, and not affected by the acylation state of the tRNA. In one case, we provide evidence that complex conversion occurs by reverse translocation (i.e., direct movement of the tRNAs from the E and P sites to the P and A sites, respectively). These findings have important implications for the energetics of translocation.  相似文献   
85.
Of the TRIM/RBCC family proteins taking part in a variety of cellular processes, TRIM50 is a stomach-specific member with no defined biological function. Our biochemical data demonstrated that TRIM50 is specifically expressed in gastric parietal cells and is predominantly localized in the tubulovesicular and canalicular membranes. In cultured cells ectopically expressing GFP-TRIM50, confocal microscopic imaging revealed dynamic movement of TRIM50-associated vesicles in a phosphoinositide 3-kinase-dependent manner. A protein overlay assay detected preferential binding of the PRY-SPRY domain from the TRIM50 C-terminal region to phosphatidylinositol species, suggesting that TRIM50 is involved in vesicular dynamics by sensing the phosphorylated state of phosphoinositol lipids. Trim50 knock-out mice retained normal histology in the gastric mucosa but exhibited impaired secretion of gastric acid. In response to histamine, Trim50 knock-out parietal cells generated deranged canaliculi, swollen microvilli lacking actin filaments, and excess multilamellar membrane complexes. Therefore, TRIM50 seems to play an essential role in tubulovesicular dynamics, promoting the formation of sophisticated canaliculi and microvilli during acid secretion in parietal cells.  相似文献   
86.
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery.  相似文献   
87.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   
88.
TRPA1 is a member of the transient receptor potential (TRP) cation channel family, and is predominantly expressed in nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Activation of TRPA1 by environmental irritants such as mustard oil, allicin and acrolein causes acute pain. However, the endogenous ligands that directly activate TRPA1 remain elusive in inflammation. Here, we show that a variety of inflammatory mediators (15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), nitric oxide (NO), hydrogen peroxide (H(2)O(2)), and proton (H(+))) activate human TRPA1 heterologously expressed in HEK cells. These inflammatory mediators induced robust Ca(2+) influx in a subset of mouse DRG neurons. The TRP channel blocker ruthenium red almost completely inhibited neuronal responses by 15d-PGJ(2) and NO, but partially suppressed responses to H(2)O(2) and H(+). Functional characterization of site-directed cysteine mutants of TRPA1 in combination with labeling experiments using biotinylated 15d-PGJ(2) demonstrated that modifications of cytoplasmic N-terminal cysteines (Cys421 and Cys621) were responsible for the activation of TRPA1 by 15d-PGJ(2). In TRPA1 responses to other cysteine-reactive inflammatory mediators, such as NO and H(2)O(2), the extent of impairment by respective cysteine mutations differed from those in TRPA1 responses to 15d-PGJ(2). Interestingly, the Cys421 mutation critically impaired the TRPA1 response to H(+) as well. Our findings suggest that TRPA1 channels are targeted by an array of inflammatory mediators to elicit inflammatory pain in the nervous system.  相似文献   
89.
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis. In a manner comparable to hematopoietic stem cell transplantation, SSCs colonize the niche of recipient testes and reinitiate spermatogenesis following microinjection into the seminiferous tubules. However, little is known about the homing mechanism of SSCs. Here we examined the role of adhesion molecules in SSC homing. SSCs isolated from mice carrying loxP-tagged beta1-integrin alleles were ablated for beta1-integrin expression by in vitro adenoviral cre transduction. The beta1-integrin mutant SSCs showed significantly reduced ability to recolonize recipient testes in vivo and to attach to laminin molecules in vitro. In contrast, genetic ablation of E-cadherin did not impair homing, and E-cadherin mutant SSCs completed normal spermatogenesis. In addition, the deletion of beta1-integrin on Sertoli cells reduced SSC homing. These results identify beta1-integrin as an essential adhesion receptor for SSC homing and its association with laminin is critical in multiple steps of SSC homing.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号