首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1987年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
Cell-free protein synthesis systems are powerful tools for protein expression, and allow large amounts of specific proteins to be obtained even if these proteins are detrimental to cell survival. In this report we describe the effect of cysteine on cell-free protein synthesis. The addition of cysteine caused a 2.7-fold increase in the level of synthesized glutathione S-transferase (GST). Moreover, the levels of sulfhydryl group reductants, including reduced glutathione and dithiothreitol (DTT), were increased 1.9- and 1.7-fold, respectively, whereas levels of the disulfide dimers, cystine and oxidized glutathione, were suppressed 87% and 66%, respectively. These trends were also observed for green fluorescent protein (GFP) expression. The addition of cysteine competitively reversed the inhibitory effect of cystine on protein expression. These results suggest that the sulfhydryl group in cysteine plays a crucial role in enhancing protein synthesis, and that the addition of excess cysteine could be a convenient and useful method for improving protein expression.  相似文献   
12.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   
13.
Sorafenib (Nexavar, BAY43-9006, 1) is a second-generation, orally active multikinase inhibitor that is approved for the treatment of some cancers in patients. In this Letter, we developed [11C]1 as a novel positron emission tomography (PET) probe, and evaluated the influence of ABC transporters-mediated efflux on brain uptake using PET with [11C]1 in P-glycoprotein (P-gp)/breast cancer resistance protein (Bcrp) knockout mice versus wild-type mice. [11C]1 was synthesized by the reaction of hydrochloride of aniline 2 with [11C]phosgene ([11C]COCl2) to give isocyanate [11C]6, followed by reaction with another aniline 3. Small-animal PET study with [11C]1 indicated that the radioactivity level (AUC0-60 min, SUV × min) in the brains of P-gp/Bcrp knockout mice was about three times higher than in wild-type mice.  相似文献   
14.
The purpose of this study was to develop 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([18F]FITM, [18F]4) as a new PET ligand for imaging metabotropic glutamate receptor subtype 1 (mGluR1). [18F]4 was synthesized by [18F]fluorination of a novel nitro precursor 3 with [18F]KF in the presence of Kryptofix 222. At the end of synthesis, 429-936 MBq (n = 8) of [18F]4 was obtained with >99% radiochemical purity and 204-559 GBq/μmol specific activity starting from 6.7 to 13.0 GBq of [18F]F. The brain distribution of [18F]4 was determined by the in vitro and ex vivo autoradiography using rat brain sections. The in vitro and in vivo specific binding of [18F]4 to mGluR1 was detected in the cerebellum, thalamus, hippocampus, and striatum. These results suggest that [18F]4 is a promising PET ligand for the in vivo evaluation of mGluR1.  相似文献   
15.
DAA1106 (N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide), is a potent and selective ligand for the translocator protein (18?kDa, TSPO) in brain mitochondrial fractions of rats and monkey (Ki?=?0.043 and 0.188?nM, respectively). In this study, to translate [18F]DAA1106 for clinical studies, we performed automated syntheses of [18F]DAA1106 using the spirocyclic iodonium ylide (1) as a radiolabelling precursor and conducted preclinical studies including positron emission tomography (PET) imaging of TSPO in ischemic rat brains. Radiofluorination of the ylide precursor 1 with [18F]F?, followed by HPLC separation and formulation, produced the [18F]DAA1106 solution for injection in 6% average (n?=?10) radiochemical yield (based on [18F]F?) with >98% radiochemical purity and molar activity of 60–100?GBq/μmol at the end of synthesis. The synthesis time was 87?min from the end of bombardment. The automated synthesis achieved [18F]DAA1106 with sufficient radioactivity available for preclinical and clinical use. Biodistribution study of [18F]DAA1106 showed a low uptake of radioactivity in the mouse bones. Metabolite analysis showed that >96% of total radioactivity in the mouse brain at 60?min after the radiotracer injection was unmetabolized [18F]DAA1106. PET study of ischemic rat brains visualized ischemic areas with a high uptake ratio (1.9?±?0.3) compared with the contralateral side. We have provided evidence that [18F]DAA1106 could be routinely produced for clinical studies.  相似文献   
16.
We developed the novel positron emission tomography (PET) ligand 2‐[5‐(4‐[11C]methoxyphenyl)‐2‐oxo‐1,3‐benzoxazol‐3(2H)‐yl]‐N‐methyl‐N‐phenylacetamide ([11C]MBMP) for translocator protein (18 kDa, TSPO) imaging and evaluated its efficacy in ischemic rat brains. [11C]MBMP was synthesized by reacting desmethyl precursor ( 1 ) with [11C]CH3I in radiochemical purity of ≥ 98% and specific activity of 85 ± 30 GBq/μmol (n = 18) at the end of synthesis. Biodistribution study on mice showed high accumulation of radioactivity in the TSPO‐rich organs, e.g., the lungs, heart, kidneys, and adrenal glands. The metabolite analysis in mice brain homogenate showed 80.1 ± 2.7% intact [11C]MBMP at 60 min after injection. To determine the specific binding of [11C]MBMP with TSPO in the brain, in vitro autoradiography and PET studies were performed in an ischemic rat model. In vitro autoradiography indicated significantly increased binding on the ipsilateral side compared with that on the contralateral side of ischemic rat brains. This result was supported firmly by the contrast of radioactivity between the ipsilateral and contralateral sides in PET images. Displacement experiments with unlabelled MBMP or PK11195 minimized the difference in uptake between the two sides. In summary, [11C]MBMP is a potential PET imaging agent for TSPO and, consequently, for the up‐regulation of microglia during neuroinflammation.

  相似文献   

17.
The purpose of this study was to develop three new radiotracers, 1-(cyclopropylmethyl)-4-([11C/18F]substituted-phenyl)piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile ([11C]1, [11C]2, and [18F]4), and to examine their specific bindings with metabotropic glutamate receptor subtype 2 (mGluR2) in rat brain sections by using in vitro autoradiography. These compounds were found to possess potent in vitro binding affinities (Ki: 8.0–34.1 nM) for mGluR2 in rat brain homogenate. [11C]1, [11C]2, and [18F]4 were synthesized by [11C/18F]alkylation of the corresponding phenol precursors with [11C]methyl iodide or [18F]fluoroethyl bromide with >98% radiochemical purity and 80–130 GBq/μmol specific activity at the end of synthesis. In vitro autoradiography indicated that these radiotracers showed heterogeneous specific bindings in mGluR2-rich brain regions, such as the cerebral cortex, striatum, hippocampus, and granular layer of the cerebellum.  相似文献   
18.
Oseltamivir phosphate (Tamiflu, 1.H(3)PO(4) is an orally active anti-influenza drug, which is hydrolyzed by esterase to its carboxylate metabolite Ro 64-0802 (2) with potent activity inhibiting neuraminidase. In this study, for the first time, we synthesized carbon-11-labeled oseltamivir ([(11)C]1) and Ro 64-0802 ([(11)C]2) as two novel positron emission tomography probes and demonstrated that [(11)C]1 had twofold higher radioactivity concentration in the mouse brains than [(11)C]2.  相似文献   
19.
Bacillus subtilis 168 and its major autolysin mutant, AN8, were shown to excrete two size classes of DNA when cultured in Luria-Bertani medium. Pulsed-field gel electrophoresis of DNA harvested from the cell surface demonstrated the presence of 13-kb-long and circa 50-kb-long strands. Restriction digestion of both sizes of DNA resulted in a smearing pattern, as observed by agarose gel electrophoresis. Shotgun sequencing of DNase I partial digests of 50-kb DNA fragments revealed that the strands originate from various sites on the chromosome. SDS-PAGE analysis of cell surface fractions and culture supernatants demonstrated the presence of several proteins that were thought to be associated with the DNA. Of these, three major proteins were identified, i.e., XkdG, XkdK, and XkdM, by tandem mass spectrometry, all of which were proteins of a defective prophage PBSX residing in the Bacillus subtilis chromosome. Disruption of these PBSX genes resulted in a reduction of 13-kb fragment generation and excretion and also a great reduction of 50-kb fragment excretion. Electron microscopy showed that a few mature phages and numerous membrane vesicle-like particles existed in the cell surface fractions of strain 168. The present findings suggest that the spontaneous generation and excretion of chromosome DNA fragments in Bacillus subtilis are both closely related to the expression of defective prophage genes.  相似文献   
20.
Monoacylglycerol lipase (MAGL) is a major serine hydrolase that hydrolyses 2-arachidonoylglycerol (2-AG) into arachidonic acid (AA) and glycerol in the brain. Because 2-AG and AA are endogenous biologically active ligands in the brain, the inhibition of MAGL is an attractive therapeutic target for neurodegenerative diseases. In this study, to visualize MAGL via positron emission tomography (PET), we report a new carbon-11-labeled radiotracer, namely 1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-benzyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate ([11C]6). Compound 6 exhibited high in vitro binding affinity (IC50 = 0.41 nM) to MAGL in the brain with a suitable lipophilicity (cLogD = 3.29). [11C]6 was synthesized by reacting 1,1,1,3,3,3-hexafluoropropanol (7) with [11C]phosgene ([11C]COCl2), followed by a reaction with 3-(1-benzyl-1H-pyrazol-3-yl)azetidine hydrochloride (8), which resulted in a 15.0 ± 6.8% radiochemical yield (decay-corrected, n = 7) based on [11C]CO2 and a 45 min synthesis time from the end of bombardment. A biodistribution study in mice showed high uptake of radioactivity in MAGL-rich organs, including the lungs, heart, and kidneys. More than 90% of the total radioactivity was irreversibly bound in the brain homogenate of rats 5 min and 30 min after the radiotracer injection. PET summation images of rat brains showed high radioactivity in all brain regions. Pretreatment with 6 or MAGL-selective inhibitor JW642 significantly reduced the uptake of radioactivity in the brain. [11C]6 is a promising PET tracer which offers in vivo specific binding and selectivity for MAGL in rodent brains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号