首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   11篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   8篇
  2013年   25篇
  2012年   22篇
  2011年   17篇
  2010年   8篇
  2009年   12篇
  2008年   13篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有220条查询结果,搜索用时 671 毫秒
71.
The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 μm for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 μm for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.  相似文献   
72.
In recent years, genome wide association studies have discovered a large number of gene loci that play a functional role in innate and adaptive immune pathways associated with leprosy susceptibility. The immunological control of intracellular bacteria M. leprae is modulated by NOD2-mediated signaling of Th1 responses. In this study, we investigated 211 clinically classified leprosy patients and 230 ethnically matched controls in Indian population by genotyping four variants in NOD2 (rs9302752A/G), LRRK2 (rs1873613A/G), RIPK2 (rs40457A/G and rs42490G/A). The LRRK2 locus is associated with leprosy outcome. The LRRK2 rs1873613A minor allele and respective rs1873613AA genotypes were significantly associated with an increased risk whereas the LRRK2 rs1873613G major allele and rs1873613GG genotypes confer protection in paucibacillary and leprosy patients. The reconstructed GA haplotypes from RIPK2 rs40457A/G and rs42490G/A variants was observed to contribute towards increased risk whereas haplotypes AA was observed to confer protective role. Our results indicate that a possible shared mechanisms underlying the development of these two clinical forms of the disease as hypothesized. Our findings confirm and validates the role of gene variants involved in NOD2-mediated signalling pathways that play a role in immunological control of intracellular bacteria M. leprae.  相似文献   
73.
Mitotic progression is regulated by co-ordinated action of several proteins and is crucial for the maintenance of genomic stability. CHFR (Check point protein with FHA and RING domains) is an E3 ubiquitin ligase and a checkpoint protein that regulates entry into mitosis. But the molecular players involved in CHFR mediated mitotic checkpoint are not completely understood. In this study, we identified TOPK/PBK, a serine/threonine kinase and PTEN, a lipid phosphatase to play an important role in CHFR mediated mitotic transitions. We demonstrated that CHFR ubiquitinates and regulates TOPK levels, which is essential for its checkpoint function. Moreover, TOPK phosphorylates and inactivates PTEN, which in turn activates Akt that leads to proper G2/M progression. Collectively, our results reveal TOPK and PTEN as new players in CHFR mediated mitotic checkpoint.  相似文献   
74.
Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.  相似文献   
75.
An improved synthetic protocol for a novel series of 2-(4-(2-substituted aminothiazole-4-yl) phenoxy)-2-methyl propanoic acid derivatives has been developed using different methods of synthesis. The synthesized compounds are evaluated for their hypolipidemic and hypoglycemic activity by high fat diet induced hyperlipidemia and hyperglycemia in Sprague-Dawley rats.  相似文献   
76.
We have previously reported a novel class of tetrahydroindazoles that display potency against a variety of Gram-positive and Gram-negative bacteria, potentially via interaction with type II bacterial topoisomerases. Herein are reported SAR investigations of this new series. Several compounds possessing broad-spectrum potency were prepared. Further, these compounds exhibit activity against multidrug-resistant Gram-positive microorganisms equivalent to that against susceptible strains.  相似文献   
77.
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a “gatekeeper” that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.  相似文献   
78.
Ovarian tumor domain-containing ubiquitin (Ub) aldehyde binding protein 1 (Otub1) regulates p53 stability and activity via non-canonical inhibition of the MDM2 cognate Ub-conjugating enzyme (E2) UbcH5. However, it is not clear how this activity of Otub1 is regulated in cells. Here we report that Otub1 is monoubiquitinated by UbcH5 in cells and in vitro, primarily at the lysine 59 and 109 residues. This monoubiquitination, in turn, contributes to the activity of Otub1 to suppress UbcH5. The lysine-free Otub1 mutant (Otub1K0) fails to be monoubiquitinated and is unable to suppress the Ub-conjugating activity of UbcH5 in vitro and the MDM2-mediated p53 ubiquitination in cells. Consistently, this mutant is unable to stabilize p53, induce apoptosis, and suppress cell proliferation. Overexpression of Otub1K0 inhibits DNA-damage induced apoptosis. Adding either Lys-59 or Lys-109 back to the Otub1K0 mutant restores the monoubiquitination of Otub1 and its function to stabilize and activate p53. We further show that UbcH5 preferentially binds to the monoubiquitinated Otub1 via Ub interaction with its backside donor Ub-interacting surface, suggesting that this binding interferes with the self-assembly of Ub-charged UbcH5 (UbcH5∼Ub) conjugates, which is critical for Ub transfer. Thus, our data reveal novel insights into the Otub1 inhibition of E2 wherein monoubiquitination promotes the interaction of Otub1 with UbcH5 and the function to suppress it.  相似文献   
79.
5-Hydroxytryptamine 6 receptors (5-HT(6)R) are being perceived as the possible target for treatment of cognitive disorders as well as obesity. The present article deals with the design, synthesis, in vitro binding and structure-activity relationship of a novel series of tetracyclic tryptamines with the rigidized N-arylsulphonyl, N-arylcarbonyl and N-benzyl substituents as 5-HT(6) receptor ligands. The chiral sulphonyl derivatives 15a and 17a showed high affinity at 5-HT(6)R with the K(i) of 23.4 and 20.5?nM, respectively. The lead compound from the series 15a has acceptable ADME properties, adequate brain penetration and is active in animal models of cognition like Novel Object Recognition Task (NORT) and water maze.  相似文献   
80.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef directs virus escape from immune surveillance by subverting host cell intracellular signaling and membrane traffic to down-regulate cell-surface major histocompatibility complex class I (MHC-I). The interaction of Nef with the sorting proteins PACS-1 and PACS-2 mediates key signaling and trafficking steps required for Nef-mediated MHC-I down-regulation. Little is known, however, about the molecular basis underlying the Nef-PACS interaction. Here we identify the sites on Nef and the PACS proteins required for their interaction and describe the consequences of disrupting this interaction for Nef action. A previously unidentified cargo subsite on PACS-1 and PACS-2 interacted with a bipartite site on Nef formed by the EEEE(65) acidic cluster on the N-terminal domain and W(113) in the core domain. Mutation of these sites prevented the interaction between Nef and the PACS proteins on Rab5 (PACS-2 and PACS-1)- or Rab7 (PACS-1)-positive endosomes as determined by bimolecular fluorescence complementation and caused a Nef mutant defective in PACS binding to localize to distorted endosomal compartments. Consequently, disruption of the Nef-PACS interaction repressed Nef-induced MHC-I down-regulation in peripheral blood mononuclear cells. Our results provide insight into the molecular basis of Nef action and suggest new strategies to combat HIV-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号