首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   20篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   12篇
  2014年   10篇
  2013年   18篇
  2012年   19篇
  2011年   14篇
  2010年   12篇
  2009年   6篇
  2008年   12篇
  2007年   9篇
  2006年   10篇
  2005年   10篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1938年   2篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
101.

Background

Coactivation of primary motor cortex ipsilateral to a unilateral movement (M1ipsilateral) has been observed, and the magnitude of activation is influenced by the contracting muscles. It has been suggested that the microstructural integrity of the callosal motor fibers (CMFs) connecting M1 regions may reflect the observed response. However, the association between the structural connectivity of CMFs and functional changes in M1ipsilateral remains unclear. The purpose of this study was to investigate the relationship between functional changes within M1ipsilateral during unilateral arm or leg movements and the microstructure of the CMFs connecting both homotopic representations (arm or leg).

Methods

Transcranial magnetic stimulation was used to assess changes in motor evoked potentials (MEP) in an arm muscle during unilateral movements compared to rest in fifteen healthy adults. Functional magnetic resonance imaging was then used to identify regions of M1 associated with either arm or leg movements. Diffusion-weighted imaging data was acquired to generate CMFs for arm and leg areas using the areas of activation from the functional imaging as seed masks. Individual values of regional fractional anisotropy (FA) of arm and leg CMFs was then calculated by examining the overlap between CMFs and a standard atlas of corpus callosum.

Results

The change in the MEP was significantly larger in the arm movement compared to the leg movement. Additionally, regression analysis revealed that FA in the arm CMFs was positively correlated with the change in MEP during arm movement, whereas a negative correlation was observed during the leg movement. However, there was no significant relationship between FA in the leg CMF and the change in MEP during the movements.

Conclusions

These findings suggest that individual differences in interhemispheric structural connectivity may be used to explain a homologous muscle-dominant effect within M1ipsilateral hand representation during unilateral movement with topographical specificity.  相似文献   
102.
Humic acid (HA) has been implicated as an etiological factor in the peripheral vasculopathy of blackfoot disease (BFD). In this study, we examined the effects of HA upon the generation of nitric oxide (NO) during the process of lethal cell injury in cultured human umbilical vein endothelial cells (HUVECs). NO production was measured by the formation of nitrite (NO(2)(-)), the stable end-metabolite of NO. Cell death was assessed by measuring the release of intracellular lactate dehydrogenase (LDH). Treatment HUVECs with HA at a concentration of 50, 100, and 200 microg/ml concentration-dependently increased nitrite levels, reaching a peak at 12 h subsequent to HA treatment, with a maximal response of approximately 400 pmole nitrite (from 1 x 10(4) cells). HA-induced nitrite formation was blocked completely by N(G)-nitro-L-arginine methyl ester (L-NAME) and also by N(G)-methyl-L-arginine (L-NMA), both being specific inhibitors of NO synthase. The LDH released from endothelial cells was evoked at from 24 h after the addition of HA (50, 100, 200 microg/ml) in a concentration- and time-dependent manner. The HA-induced LDH release was also reduced by the presence of both L-NAME and L-NMA. The addition of Ca(2+) chelator (BAPTA) inhibited both nitrite formation and LDH release by HA. Moreover, the antioxidants (superoxide dismutase, vitamin C, vitamin E) and protein kinase inhibitor (H7) effectively suppressed HA-induced nitrite formation. These results suggest that HA treatment of endothelial cells stimulates NO production, which can elicit cell injury via the stimulation of Ca(2+)-dependent NO synthase activity by increasing cytosolic Ca(2+) levels. Because the destruction of endothelial cells has been implicated in triggering the onset of BFD, the induction of excessive levels of NO and consequent endothelial-cell injury may be important to the etiology of HA-induced vascular disorders associated with BFD for humans.  相似文献   
103.
104.
The purposes of these studies were to quantify the concentrations of total nitrate and nitrite (NO(x)(-)) cyclic guanosine monophosphate (cGMP), and nitrotyrosine over skin surface in normal weight healthy volunteers (n = 64) compared to overweight/obese subjects (n = 54). A semi-circular plastic tube was taped to the skin along acupuncture points (acupoints), meridian line without acupoint (MWOP), and nonmeridian control and filled with a 2-Phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl solution for 20 min. The concentrations of NO(x)(-), cGMP, and nitrotyrosine in the samples were quantified in a blinded fashion using chemiluminescence and enzyme-linked immunosorbent assay, respectively. In normal weight healthy volunteers, NO(x)(-) and cGMP concentrations were consistently increased over the pericardium meridian (PC) 4-7 compared with nonmeridian areas. NO(x)(-) concentration is enhanced over the bladder meridian (BL) 56-57, but cGMP level is similar between the regions. In overweight/obese subjects, NO(x)(-) contents were increased or tended to be elevated over PC and BL regions. cGMP is paradoxically decreased over PC acupoints and nonmeridian control on the forearm but the decreases were blunted along BL regions on the leg. Nitrotyrosine concentrations are markedly elevated (five- to sixfold) over both PC and BL in all areas of overweight/obese subjects. This is the first evidence showing that nitrotyrosine level is tremendously elevated over skin accompanied by paradoxical changes in nitric oxide (NO)-cGMP concentrations over PC skin region in overweight/obese subject. The results suggest that NO-related oxidant inflammation is systemically enhanced while cGMP generation is impaired over PC skin region but not over BL region in obesity.  相似文献   
105.
Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT). Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular invasion/migration.  相似文献   
106.
107.
108.
Mass spectrometry biomarker discovery may assist patient's diagnosis in time and realize the characteristics of new diseases. Our previous work built a preprocess method called HHTmass which is capable of removing noise, but HHTmass only a proof of principle to be peak detectable and did not tested for peak reappearance rate and used on medical data. We developed a modified version of biomarker discovery method called Enhance HHTMass (E-HHTMass) for MALDI-TOF and SELDI-TOF mass spectrometry data which improved old HHTMass method by removing the interpolation and the biomarker discovery process. E-HHTMass integrates the preprocessing and classification functions to identify significant peaks. The results show that most known biomarker can be found and high peak appearance rate achieved comparing to MSCAP and old HHTMass2. E-HHTMass is able to adapt to spectra with a small increasing interval. In addition, new peaks are detected which can be potential biomarker after further validation.  相似文献   
109.
Due to its physiologic role in modulating adhesive interactions between blood cells and the endothelium during inflammatory processes or at injury sites, the adhesion molecule P-selectin is of great interest. The level of soluble P-selectin in plasma or serum can be detected and used as a clinical predictor for adverse cardiovascular events, leading to the presumption that it is secreted, shed or cleaved from the cell membrane during the process of diseases. Increased levels of soluble P-selectin in the plasma have been shown to be associated with a range of cardiovascular disorders, including coronary artery disease, hypertension and atrial fibrillation. Therefore, it is of huge significance to develop simple, rapid and sensitive methods for the detection of such pathological predictors, not only for facilitating the surveillance of cardiovascular mortality/sudden cardiac death, but also for effectively monitoring the drug potency on platelets based on measurement of P-selectin performed on fixed blood samples following platelet stimulation in whole blood in a remote setting. We herein developed a simple, yet novel and sensitive electrochemical sandwich immunosensor for the detection of P-selectin; it operates through covalent linkage of anti-P-selectin antibody on CNT@GNB nanocomposites-modified disposable screen-printed electrode as the detection platform, with the potassium ferrocyanide-encapsulated, anti-P-selectin-tagged liposomal biolabels as the electrochemical signal probes. The immunorecognition of the sample P-selectin by the liposomal biolabels occurred on the surface of the electrodes; the release of potassium ferrocyanide from the bound liposomal biolabels extensively contributed to the increase in electrochemical signal, which was acquired in HCl solution at +0.32V in square wave voltammetry mode. The resulting sigmoidally shaped dose-response curves possessed a linear dynamic working range from 1×10(-13) to 1×10(-5)g/mL. This liposome-based electrochemical immunoassay provides an amplification approach for detecting P-selectin at trace levels, leading to a detection limit as low as 4.3fg (equivalent to 5μL of 0.85pg/mL solution). A commercially available ELISA kit was used as a reference method to validate the newly-developed assay through the analysis of mouse serum samples. A strong correlation was observed between the two data sets as the R-squared value of 0.997 from the linear regression line. This electrochemical immunosensor will be useful for the detection of P-selectin in biological fluids and tissue extracts.  相似文献   
110.
Amiloride-sensitive epithelial Na(+) channels (ENaCs) can be formed by different combinations of four homologous subunits, named α, β, γ, and δ. In addition to providing an apical entry pathway for transepithelial Na(+) reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, ENaCs are also expressed in nonepithelial cells, where they may play different functional roles. The δ-subunit of ENaC was originally identified in humans and is able to form amiloride-sensitive Na(+) channels alone or in combination with β and γ, generally resembling the canonical kidney ENaC formed by α, β, and γ. However, δ differs from α in its tissue distribution and channel properties. Despite the low sequence conservation between α and δ (37% identity), their similar functional characteristics provide an excellent model for exploring structural correlates of specific ENaC biophysical and pharmacological properties. Moreover, the study of cellular mechanisms modulating the activity of different ENaC subunit combinations provides an opportunity to gain insight into the regulation of the channel. In this review, we examine the evolution of ENaC genes, channel subunit composition, the distinct functional and pharmacological features that δ confers to ENaC, and how this can be exploited to better understand this ion channel. Finally, we briefly consider possible functional roles of the ENaC δ-subunit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号