首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3067篇
  免费   194篇
  国内免费   1篇
  3262篇
  2022年   20篇
  2021年   25篇
  2020年   18篇
  2019年   27篇
  2018年   26篇
  2017年   17篇
  2016年   39篇
  2015年   46篇
  2014年   58篇
  2013年   312篇
  2012年   163篇
  2011年   119篇
  2010年   78篇
  2009年   96篇
  2008年   149篇
  2007年   154篇
  2006年   128篇
  2005年   123篇
  2004年   144篇
  2003年   130篇
  2002年   116篇
  2001年   93篇
  2000年   114篇
  1999年   111篇
  1998年   41篇
  1997年   32篇
  1996年   25篇
  1995年   27篇
  1994年   21篇
  1993年   30篇
  1992年   72篇
  1991年   63篇
  1990年   53篇
  1989年   41篇
  1988年   58篇
  1987年   33篇
  1986年   44篇
  1985年   33篇
  1984年   43篇
  1983年   30篇
  1982年   39篇
  1981年   34篇
  1980年   21篇
  1979年   18篇
  1978年   21篇
  1977年   22篇
  1974年   20篇
  1973年   16篇
  1972年   19篇
  1967年   18篇
排序方式: 共有3262条查询结果,搜索用时 15 毫秒
51.
Cancer cells metastasized to bone induce osteoclastogenesis for bone destruction. Coculture of either mouse melanoma B16 or breast cancer Balb/c-MC cells with mouse bone marrow cells (BMCs) induced osteoclast-like cells, which were not observed when cancer cells were segregated from BMCs. Osteoclast differentiation factor (ODF), also known as receptor activator of NF-kappaB ligand (RANKL), is a direct mediator of many osteotropic factors. Neither BMCs, B16 nor Balb/c-MC cells alone expressed ODF mRNA. However, coculture of these cancer cells with BMCs induced ODF expression, which was prevented by indomethacin. Moreover, the coculture with cancer cells inhibited secretion of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF), an inhibitory decoy receptor for ODF, from BMCs. Thus, enhanced osteoclastogenesis in the presence of cancer cells might be due to an increase in ODF activity. These results suggest that interactions between cancer cells and BMCs induce ODF expression and suppress OPG/OCIF level in metastatic foci resulting in pathological osteoclastogenesis for bone destruction.  相似文献   
52.
Two new isoflavonoids were isolated from red clover as germination inhibitors for the same plant and their structures were determined as a glucoside of biochanin A (7-d-β-glucosyl-5,7-dihydroxy-4′-methoxyisoflavone) (II) and its 5-malonate (I), respectively. Besides these compounds the following substances were also isolated as inhibitors: trifolirhizin (III), ononin (IV), daidzein (V) and its 7-glucoside (VI), formononetin (VII), genistein (VIII) and biochanin A (IX).  相似文献   
53.
The structure of the bay region (1R,2S,3R,4S)-N6-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X(7) of 5'-d(CGGACAXGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, was determined by NMR. This was the bay region benz[a]anthracene RSRS (61,3) adduct. The BA moiety intercalated above the 5'-face of the modified base pair. NOE connectivities between imino protons were disrupted at T16 and T17. Large chemical shifts at the lesion site were consistent with ring current shielding arising from the BA moiety. A large chemical shift dispersion was observed for the BA aromatic protons. An increased rise of 8.17 A was observed between base pairs A6 x T17 and X7 x T(16). The PAH moiety stacked with the purine ring of A6, the 5'-neighbor nucleotide. This resulted in buckling of the 5'-neighbor A6 x T17 base pair, evidenced by exchange broadening for the T17 imino resonance. It also interrupted sequential NOE connectivities between nucleotides C5 and A6. The A6 deoxyribose ring showed an increased percentage of the C3'-endo conformation. This differed from the bay region BA RSRS (61,2) adduct, in which the lesion was located at position X6 [Li, Z., Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981], but was similar to the benzo[a]pyrene BP SRSR (61,3) adduct [Zegar I. S., Chary, P., Jabil, R. J., Tamura, P. J., Johansen, T. N., Lloyd, R. S., Harris, C. M., Harris, T. M., and Stone, M. P. (1998) Biochemistry 37, 16516-16528]. The altered sugar pseudorotation at A6 appears to be common to both bay region BA RSRS (61,3) and BP SRSR (61,3) adducts. It could not be discerned if the C3'-endo conformation at A6 in the BA RSRS (61,3) adduct altered base pairing geometry at X7 x T16, as compared to the C2'-endo conformation. The structural studies suggest that the mutational spectrum of this adduct may be more complex than that of the BA RSRS (61,2) adduct.  相似文献   
54.
It is known that the reaction-center binding protein D1 in photosystem (PS) II is degraded significantly during photoinhibition. The D1 protein also cross-links covalently or aggregates non-covalently with the nearby polypeptides in PS II complexes by illumination. In the present study, we detected the adducts between the D1 protein and the other reaction-center binding protein D2 (D1/D2), the alpha-subunit of cyt b(559) (D1/cyt b(559)), and the antenna chlorophyll-binding protein CP43 (D1/CP43) by SDS/urea-polyacrylamide gel electrophoresis and Western blotting with specific antibodies. The adducts were observed by weak and strong illumination (light intensity: 50-5000 microE m(-2) s(-1)) of PS II membranes, thylakoids and intact chloroplasts from spinach, under aerobic conditions. These results indicate that the cross-linking or aggregation of the D1 protein is a general phenomenon which occurs in vivo as well as in vitro with photodamaged D1 proteins. We found that the formation of the D1/D2, D1/cyt b(559) and D1/CP43 adducts is differently dependent on the light intensity; the D1/D2 heterodimers and D1/cyt b(559) were formed even by illumination with weak light, whereas generation of the D1/CP43 aggregates required strong illumination. We also detected that these D1 adducts were efficiently removed by the addition of stromal components, which may contain proteases, molecular chaperones and the associated proteins. By two-dimensional SDS/urea-polyacrylamide gel electrophoresis, we found that several stromal proteins, including a 15-kDa protein are effective in removing the D1/CP43 aggregates, and that their activity is resistant to SDS.  相似文献   
55.
cis-5-Hydroxy-L-pipecolic acid was isolated and characterized from the leaves of Morus alba and the seeds of Lathyrus japonicus. The trans-form was also obtained from the former.  相似文献   
56.
The structures of two 4α-methylsterols is isolated from Cucumis sativus(Cucurbitaceae) seeds were determined based mainly on their 13CNMR spectra as 24β-ethyl-31-norlanosta-8,25(27)-dien-3β-ol and 24β-ethyl-25(27)- dehydrolophenol, respectively, of which the former is a new sterol from natural sources. These two 4α-methylsterols were identified in the seeds of two other Cucurbitaceae species, Lagenaria leucantha var. Gourda and Citrullus battich. The probable biogenetic significance of the two 4α-methylsterols is discussed. Other 4α-methylsterols identified in the seeds of the three Cucurbitaceae species were obtusifoliol, cycloeucalenol and gramisterol.  相似文献   
57.

Background

Accumulating evidence indicates that cancer stem cells (CSCs) drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS) forming model, to generate a population in which glioma stem cells (GSCs) become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.

Methodology/Principal Findings

To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres). Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone). Log-log plots of distributions of clone sizes yielded a good fit (r>0.90) to a straight line (log(% total clones) = k*log(#cells/clone)) indicating that the system follows a power-law (y = xk) with a specific degree exponent (k = −1.42). Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = −1.01 to −1.17). Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM), suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.

Conclusions/Significance

Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous glioma stem cell populations. That the data always fit a power-law suggests that: (i) clone sizes follow continuous, non-random, and scale-free hierarchy; (ii) precise biologic rules that reflect self-organizing emergent behaviors govern the generation of neurospheres. That the power-law behavior and the original GS heterogeneity are maintained over multiple passages indicates that these rules are invariant. These self-organizing mechanisms very likely underlie tumor heterogeneity during tumor growth. Discovery of this power-law behavior provides a mechanism that could be targeted in the development of new, more effective, anti-cancer agents.  相似文献   
58.
The influences of two water soluble contrast media, meglumine iothalamate and meglumine iocarmate, on the neuronal excitability and on the neuronal sensitivity to putative transmitters were examined in comparison with those of sucrose using two identifiable giant neurones of Achatina fulica Férussac (the TAN and the PON). A relatively low increase of osmotic pressure of the extracellular fluid, produced by the application of contrast media, reversed the Cl- dependent inhibition caused by a putative transmitter. The same increase of this osmotic pressure, however, did not influence the Cl- independent inhibition and the excitation of the neurone examined. The hyperpolarization of neuromembrane was caused by an increase of osmotic pressure of the extracellular fluid. Its relatively high increase was necessary to make spontaneous spike discharges disappear totally. All effects of the two contrast media, observed in this study, were due to the increase of osmotic pressure of the extracellular fluid ; no specific effect of the contrast media containing the iodine on the indicators used was observed.  相似文献   
59.
Serine acetyltransferase (SATase) (EC 2.3.1.30 [EC] ) catalyzes theformation of Oacetyl-L-serine (OAS) from L-serine in the presenceof acetyl-CoA. A novel assay method was developed for measuringthis enzyme activity in extracts from plant tissues. The assayconsists of a coupled system in which the OAS formed is convertedto cysteine by the addition of cysteine synthase (CSase) (EC4.2.99.8 [EC] ). Cysteine thus formed is determined colorimetricallyand serves as a measure for SATase activity. This method israpid, simple and sensitive, and can be readily adapted formeasurement of SATase activity in crude tissue extracts or homogenates. (Received January 14, 1987; Accepted April 27, 1987)  相似文献   
60.
Sulfotransferase (ST) activity for 20-hydroxyecdysone (20E) was identified in a larval fat body lysate of the fleshfly, Sarcophaga peregrina, but not in the hemolymph. The activity was highly sensitive to 2,6-dichloro-4-nitrophenol (DCNP) (IC50=0.61 microM), a specific inhibitor of phenol ST (P-ST), but insensitive to triethylamine, a hydroxysteroid ST inhibitor. These results suggest that 20E-specific ST enzymes belong to the P-ST family, despite the fact that 20E is a hydroxysteroid. In addition to 20E ST activity, a relatively high level of 2-naphthol ST activity was detected in the fat body lysate. The ST activity for both substrates transiently decreased to the 50% of maximal levels, 6 hrs after induction of pupation. The ST enzymes were separated on a DEAE-cellulose column. The 20E-ST enzymes were eluted around 50 mM KCl as two separate peaks of close proximity and the P-ST was eluted at 0.1 M KCl. The 20E ST enzymes were further purified using 3'-phosphoadenosine 5'-phosphate (PAP)-agarose affinity column chromatography. Both of the eluted active fractions demonstrated 43-kDa proteins on SDS-polyacrylamide gel. Photoaffinity labeling with [35S]-3'-phosphoadenosine 5'-phosphosulfate (PAPS) showed 43-kDa bands in the fat body lysate, as well as in the purified fractions. These results suggest that the 43-kDa proteins catalyze 20E sulfation within the fat body of S. peregrina.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号