首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2224篇
  免费   137篇
  2022年   12篇
  2021年   25篇
  2020年   18篇
  2019年   17篇
  2018年   23篇
  2017年   19篇
  2016年   42篇
  2015年   56篇
  2014年   61篇
  2013年   118篇
  2012年   134篇
  2011年   138篇
  2010年   82篇
  2009年   73篇
  2008年   155篇
  2007年   122篇
  2006年   129篇
  2005年   104篇
  2004年   139篇
  2003年   109篇
  2002年   110篇
  2001年   48篇
  2000年   57篇
  1999年   40篇
  1998年   39篇
  1997年   24篇
  1996年   20篇
  1995年   23篇
  1994年   19篇
  1993年   25篇
  1992年   32篇
  1991年   31篇
  1990年   21篇
  1989年   32篇
  1988年   45篇
  1987年   20篇
  1986年   17篇
  1985年   22篇
  1984年   15篇
  1983年   12篇
  1982年   21篇
  1981年   14篇
  1980年   15篇
  1979年   8篇
  1978年   7篇
  1977年   14篇
  1976年   7篇
  1975年   10篇
  1974年   8篇
  1973年   13篇
排序方式: 共有2361条查询结果,搜索用时 31 毫秒
161.
162.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the K(m) values for NADH and FMN were 208 and 10.8 microM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35 degrees C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80 degrees C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705-1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   
163.
Cardiotrophin-1 (CT-1) stimulates longitudinal myocardial cell hypertrophy. We examined the expression of CT-1, leukemia inhibitory factor (LIF), and gp130 by competitive RT-PCR and Western blotting in Dahl salt-sensitive (DS) rats with a high-salt diet, which showed a distinct transition from left ventricular hypertrophy (LVH) to congestive heart failure (CHF). The expression levels of CT-1 mRNA and protein were significantly increased at the CHF stage compared with the LVH stage and age-matched Dahl salt-resistant (DR) rats (n = 6 for each group). mRNA expression of LIF was not changed in the left ventricle at any stage by RT-PCR. gp130 mRNA and protein levels of DS rats at 11 and 17 wk were significantly increased compared with age-matched DR rats. The isolated myocyte length of DS rats at 17 wk was the longest among the four groups of rats. The LV end-diastolic dimension (LVDd) of DS rats, determined by echocardiography, was significantly increased at the CHF stage. There was a significant correlation between the CT-1 protein level and LVDd. CT-1 may play a role in ventricular remodeling during transition from LVH to CHF in the rat hypertensive model.  相似文献   
164.
165.
The timing of pupal commitment of the forewing imaginal discs of the silkworm, Bombyx mori, was determined by a transplantation assay using fourth instar larvae. The wing discs were not pupally committed at the time of ecdysis to the fifth instar. Pupal commitment began shortly after the ecdysis and was completed in 14 h. When the discs of newly molted larvae (0-h discs) were cultured in medium containing no hormone, they were pupally committed in 26 h. In vitro exposure of 0-h discs to 20-hydroxyecdysone accelerated the progression of pupal commitment. Methoprene, a juvenile hormone analog (JHA), did not suppress the change in commitment in vitro at physiological concentrations. Thus the wing discs at the time of the molt have lost their sensitivity to JH, and 20E is not a prerequisite for completion of pupal commitment. These results suggest that the change in commitment in the forewing discs may begin before the last larval molt.  相似文献   
166.
Cysteinyl leukotrienes (LTs) are important proinflammatory mediators. Their precise roles in mice need to be elucidated to interpret mouse models of inflammatory diseases. For this purpose, we cloned and characterized mouse receptors for cysteinyl LTs, mCysLT(1) and mCysLT(2). mCysLT(1) and mCysLT(2) were composed of 339 amino acids with 87.3% identity and 309 amino acids with 73.4% identity to human orthologues, respectively. A pharmacological difference was noted between mouse and human CysLT(2). Pranlukast, a specific inhibitor for human CysLT(1), antagonized mCysLT(2) responses as determined by Ca(2+) elevation and receptor-induced promoter activation. The mRNA expressions of both mCysLTs were higher in C57BL/6 mice than in 129 mice. mCysLT(1) mRNA was expressed mainly in skin, lung, and small intestine. mCysLT(2) was seen more ubiquitously with high expressions in spleen, lung, and small intestine. By in situ hybridization we demonstrated for the first time that mCysLT(1) and mCysLT(2) were expressed in subcutaneous fibroblasts. The different pharmacological characteristics of CysLT(2) between human and mouse and the different distributions of CysLTs between mouse strains suggest that careful choice and interpretation are necessary for a study of CysLTs using animal models.  相似文献   
167.
Lipoproteins are present in a wide variety of bacteria and are anchored to membranes through lipids attached to the N-terminal cysteine. The Lol system of Escherichia coli mediates the membrane-specific localization of lipoproteins. Aspartate at position 2 functions as a Lol avoidance signal and causes the retention of lipoproteins in the inner membrane, whereas lipoproteins having residues other than aspartate at position 2 are released from the inner membrane and localized to the outer membrane by the Lol system. Phospholipid:apolipoprotein transacylase, Lnt, catalyzes the last step of lipoprotein modification, converting apolipoprotein into mature lipoprotein. To reveal the importance of this aminoacylation for the Lol-dependent membrane localization, apolipoproteins were prepared by inhibiting lipoprotein maturation. Lnt was also purified and used to convert apolipoprotein into mature lipoprotein in vitro. The release of these lipoproteins was examined in proteoliposomes. We show here that the aminoacylation is essential for the Lol-dependent release of lipoproteins from membranes. Furthermore, lipoproteins with aspartate at position 2 were found to be aminoacylated both in vivo and in vitro, indicating that the lipoprotein-sorting signal does not affect lipid modification.  相似文献   
168.
Recognition of the substrates by ubiquitin ligases is crucial for substrate specificity in the ubiquitin-proteasome proteolytic pathway. In the present study, we designed a double RING finger ubiquitin ligase to direct the ubiquitin machinery to a specific substrate. The engineered ligase contains the RING finger domains of both BRCA1 and BARD1 linked to a substrate recognition site PCNA, which is known to interact with cyclin-dependent kinase inhibitor p57. The double RING finger ubiquitin ligase formed a homo-oligomer complex and exhibited significant ligase activity. Co-transfection of the ligase reduced the expression of transfected p57 to the background level in a proteasome-dependent manner and restored the colony formation ability of U2OS cells that is otherwise inhibited by overexpressed p57. The results indicate the ability of the engineered double RING ubiquitin ligase to target the intended substrate. By redesigning the substrate recognition site, expression of engineered double RING ubiquitin ligases may provide a useful tool for removing many different gene products at the protein level.  相似文献   
169.
170.
A variety of stimuli, such as abscisic acid (ABA), reactive oxygen species (ROS), and elicitors of plant defense reactions, have been shown to induce stomatal closure. Our study addresses commonalities in the signaling pathways that these stimuli trigger. A recent report showed that both ABA and ROS stimulate an NADPH-dependent, hyperpolarization-activated Ca(2+) influx current in Arabidopsis guard cells termed "I(Ca)" (Z.M. Pei, Y. Murata, G. Benning, S. Thomine, B. Klüsener, G.J. Allen, E. Grill, J.I. Schroeder, Nature [2002] 406: 731-734). We found that yeast (Saccharomyces cerevisiae) elicitor and chitosan, both elicitors of plant defense responses, also activate this current and activation requires cytosolic NAD(P)H. These elicitors also induced elevations in the concentration of free cytosolic calcium ([Ca(2+)](cyt)) and stomatal closure in guard cells. ABA and ROS elicited [Ca(2+)](cyt) oscillations in guard cells only when extracellular Ca(2+) was present. In a 5 mM KCl extracellular buffer, 45% of guard cells exhibited spontaneous [Ca(2+)](cyt) oscillations that differed in their kinetic properties from ABA-induced Ca(2+) increases. These spontaneous [Ca(2+)](cyt) oscillations also required the availability of extracellular Ca(2+) and depended on the extracellular potassium concentration. Interestingly, when ABA was applied to spontaneously oscillating cells, ABA caused cessation of [Ca(2+)](cyt) elevations in 62 of 101 cells, revealing a new mode of ABA signaling. These data show that fungal elicitors activate a shared branch with ABA in the stress signal transduction pathway in guard cells that activates plasma membrane I(Ca) channels and support a requirement for extracellular Ca(2+) for elicitor and ABA signaling, as well as for cellular [Ca(2+)](cyt) oscillation maintenance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号