首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21371篇
  免费   1756篇
  国内免费   1677篇
  2024年   44篇
  2023年   176篇
  2022年   407篇
  2021年   682篇
  2020年   534篇
  2019年   672篇
  2018年   712篇
  2017年   599篇
  2016年   913篇
  2015年   1239篇
  2014年   1567篇
  2013年   1651篇
  2012年   1896篇
  2011年   1779篇
  2010年   1168篇
  2009年   1028篇
  2008年   1292篇
  2007年   1217篇
  2006年   1090篇
  2005年   1039篇
  2004年   948篇
  2003年   865篇
  2002年   755篇
  2001年   437篇
  2000年   366篇
  1999年   289篇
  1998年   205篇
  1997年   158篇
  1996年   128篇
  1995年   109篇
  1994年   77篇
  1993年   53篇
  1992年   90篇
  1991年   61篇
  1990年   61篇
  1989年   59篇
  1988年   52篇
  1987年   33篇
  1986年   27篇
  1985年   35篇
  1984年   32篇
  1983年   23篇
  1982年   27篇
  1981年   16篇
  1979年   26篇
  1978年   20篇
  1976年   12篇
  1974年   16篇
  1973年   16篇
  1972年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant responses to both biotic and abiotic stress. A screen of a Nicotiana benthamiana cDNA virus-induced gene silencing (VIGS) library for altered plant responses to inoculation with Phytophthora infestans previously identified an NbMKK gene, encoding a clade D MAPKK that we renamed as NbMKK5, which is involved in immunity to P. infestans. To study the role of the potato orthologous gene, referred to as StMKK5, in the response to P. infestans, we transiently overexpressed StMKK5 in N. benthamiana and observed that cell death occurred at 2 days postinfiltration. Silencing of the highly conserved eukaryotic protein SGT1 delayed the StMKK5-induced cell death, whereas silencing of the MAPK-encoding gene NbSIPK completely abolished the cell death response. Further investigations showed that StMKK5 interacts with, and directly phosphorylates, StSIPK. Furthermore, both StMKK5 and StSIPK trigger salicylic acid (SA)- and ethylene (Eth)-related gene expression, and co-expression of the salicylate hydroxylase NahG with the negative regulator of Eth signalling CTR1 hampers StSIPK-triggered cell death. This observation indicates that the cell death triggered by StMKK5-StSIPK is dependent on the combination of SA- and Eth-signalling. By introducing point mutations, we showed that the kinase activity of both StMKK5 and StSIPK is required for triggering cell death. Genetic analysis showed that StMKK5 depends on StSIPK to trigger plant resistance. Thus, our results define a potato StMKK5-SIPK module that positively regulates immunity to P. infestans via activation of both the SA and Eth signalling pathways.  相似文献   
102.
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.  相似文献   
103.
104.
A pair of -cyano analogues of decarboxylated S-adenosylmethionine (2a and 2b) were synthesized as potential enzyme activated, irreversible inhibitors of the[pyruvoyl enzyme S-adenosylmethionine decarboxylase (AdoMet-DC). Each of these analogues acts as an irreversible inactivator for ADoMet-DC from Escherichia coli (IC50 values of 9 and 50 μM, respectively). These analogues also inactivate human AdoMet-DC, with KI values of 246.6 and 7.2 μM, and kinact values of 0.29 and 0.03 min−1, respectively.  相似文献   
105.
The conformationally restricted S-adenosylmethionine analogue AdoMac (S-(5′-deoxy-5′-adenosyl)-1-ammonio-4-methylsulfonio-2-cyclopentene has been shown to act as an enzyme activated, irreversible inhibitor of theEscherichia coli form of the enzyme S-adenosylmethionine decarboxylase. Inactivation of the enzyme is presumably initiated by formation of an imine linkage between the inhibitor and the terminal pyruvate of the enzyme, followed by base-catalyzed elimination of methylthioadenosine and generation of a latent electrophile. Removal of the driving force for the elimination of methylthioadenosine resulted in a reversibly binding inhibitor. Thus, the thioether analogue corresponding to AdoMac, and the corresponding dihydro derivative (H2-AdoMac), reversibly inhibit the enzyme. AdoMac was resolved into its four pure diastereomeric forms, and each diastereomer was evaluated as an irreversible inhibitor of the enzyme. The KI values for the individual diastereomers range between 3.83 and 39.6 μM, with the cis-1S,4R diastereomer being the most potent inhibitor. However, the kinact values for the four diastereomers are not significantly different, suggesting that the binding of each diastereomer to the enzyme is configuration-dependent, while the subsequent inactivation likely proceeds through a single intermediate which is formed from each of the four diastereomers. Since each pure diastereomer represents a distinct conformational mimic exhibiting restricted sidechain rotation, the data suggests that these and related analogues may be useful as conformational probes for the catalytic site of AdoMet-DC.  相似文献   
106.
Li  Zhiyuan  Jiang  Hong  Liang  Zhiguo  Wang  Zepeng  Jiang  Xiumei  Qin  Yong 《Journal of Plant Growth Regulation》2023,42(2):922-934

This study examined the effects of nitrogen (N) fertilizer reduction on the carbon (C) metabolism and yield of Coreopsis tinctoria. A two-year (2020–2021) hydroponic experiment was conducted in accordance with a randomized complete group design with five N levels [0.875 mM Ca(NO3)2 (N1), 1.750 mM Ca(NO3)2 (N2), 3.500 mM Ca(NO3)2 (N3), 7.000 mM Ca(NO3)2 (N4), and 14.000 mM Ca(NO3)2 (N5)] and three replications. The results showed that low N significantly affected the functional leaf weight, C metabolism, and flower bud (or flower) numbers of C. tinctoria at harvest. Lower-N levels, especially those of the N2 treatment, significantly increased Rubisco, sucrose synthase (SS), sucrose phosphate synthase (SPS), soluble acid invertase (SAI), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH) activity and maintained the flower number of C. tinctoria. In addition, the balance of carbohydrates (sucrose, starch, glucose, and fructose) and ATP contents was more efficiently maintained under relatively low-N levels. These findings might suggest that reduced application of N fertilizer affects the C metabolism of leaves and maintains the number of flowers in Coreopsis tinctoria. Applying relatively low-N fertilizer levels is also a promising cultivation strategy for C. tinctoria.

  相似文献   
107.
Biochar and manure can be used for sustainable land management. However, little is known about how soil amendments might affect surface and belowground microbial processes and subsequent wood decomposition. In a split-split-split plot design, we amended soil with two rates of manure (whole plot; 0 and 9 Mg ha−1) and biochar (split plot; 0 and 10 Mg ha−1). Wood stakes of three species (hybrid poplar, triploid Populus tomentosa Carr.; aspen, Populus tremuloides Michx.; and pine, Pinus taeda L.) were placed in two positions (horizontally on the soil surface, and inserted vertically in the mineral soil), which served as a substrate for fungal growth. In 3 years, the decomposition rate (density loss), moisture content, and fungal community (via high-throughput sequencing methods) of stakes were evaluated. Results indicated that biochar and/or manure increased the wood stake decomposition rates, moisture content, and operational taxonomic unit abundance. However, the richness and diversity of fungi were dependent on wood stake position (surface > mineral), species (pine > the two Populus), and sample dates. This study highlights that soil amendment with biochar and/or manure can alter the fungal community, which in turn can enhance an important soil process (i.e., decomposition).  相似文献   
108.
R-1,3-butanediol (R-1,3-BDO) is an important chiral intermediate of penem and carbapenem synthesis. Among the different synthesis methods to obtain pure enantiomer R-1,3-BDO, oxidation–reduction cascades catalysed by enzymes are promising strategies for its production. Dehydrogenases have been used for the reduction step, but the enantio-selectivity is not high enough for further organic synthesis efforts. Here, a short-chain carbonyl reductase (LnRCR) was evaluated for the reduction step and developed via protein engineering. After docking result analysis with the substrate 4-hydroxy-2-butanone (4H2B), residues were selected for virtual mutagenesis, their substrate-binding energies were compared, and four sites were selected for saturation mutagenesis. High-throughput screening helped identify a Ser154Lys mutant which increased the catalytic efficiency by 115% compared to the parent enzyme. Computer-aided simulations indicated that after single residue replacement, movements in two flexible areas (VTDPAF and SVGFANK) facilitated the volumetric compression of the 4H2B-binding pocket. The number of hydrogen bonds between the stabilized 4H2B-binding pocket of the mutant enzyme and substrate was higher (from four to six) than the wild-type enzyme, while the substrate-binding energy was decreased (from −17.0 kJ/mol to −29.1 kJ/mol). Consequently, the catalytic efficiency increased by approximately 115% and enantio-selectivity increased from 95% to 99%. Our findings indicate that compact and stable substrate-binding pockets are critical for enzyme catalysis. Lastly, the utilization of a microbe expressing the Ser154Lys mutant enzyme was proven to be a robust process to conduct the oxidation–reduction cascade at larger scales.  相似文献   
109.
110.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号