首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8223篇
  免费   531篇
  国内免费   12篇
  2023年   17篇
  2022年   75篇
  2021年   153篇
  2020年   95篇
  2019年   119篇
  2018年   174篇
  2017年   154篇
  2016年   280篇
  2015年   412篇
  2014年   547篇
  2013年   583篇
  2012年   678篇
  2011年   618篇
  2010年   351篇
  2009年   345篇
  2008年   486篇
  2007年   477篇
  2006年   451篇
  2005年   406篇
  2004年   388篇
  2003年   333篇
  2002年   290篇
  2001年   212篇
  2000年   189篇
  1999年   137篇
  1998年   57篇
  1997年   42篇
  1996年   43篇
  1995年   52篇
  1994年   31篇
  1993年   22篇
  1992年   64篇
  1991年   45篇
  1990年   49篇
  1989年   42篇
  1988年   34篇
  1987年   28篇
  1986年   25篇
  1985年   28篇
  1984年   27篇
  1983年   16篇
  1982年   19篇
  1981年   11篇
  1979年   19篇
  1978年   18篇
  1976年   10篇
  1975年   11篇
  1974年   16篇
  1973年   17篇
  1972年   10篇
排序方式: 共有8766条查询结果,搜索用时 15 毫秒
281.
282.
Laurus nobilis Linn. (Lauraceae), commonly known as Bay, has been used as a traditional medicine in the Mediterranean and Europe to treat diverse immunological disorders. Although the effects of L. nobilis on immunosuppression have been reported, the detailed underlying mechanism remains unclear. In this study, to elucidate the anti-inflammatory mechanism of L. nobilis, we examined the effect of L. nobilis leaf extract on inflammasome activation in mouse bone marrow-derived macrophages. L. nobilis leaf extract inhibited NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation, which was associated with caspase-1 activation, interleukin-1β secretion, and apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome complex formation. We also observed that 1,8-cineole, the major component of L. nobilis extract, consistently suppressed NLRP3 inflammasome activation. Furthermore, L. nobilis leaf extract attenuated the in vivo expression of proinflammatory cytokines in an acute lung injury mouse model. Our results provide the first evidence that L. nobilis leaf extract modulates inflammatory signaling by suppressing inflammasome activation.  相似文献   
283.
Wnt signaling pathway plays critical roles in body axes patterning, cell fate specification, cell proliferation, cell migration, stem cell maintenance, cancer development and etc. Deregulation of this pathway can be causative of cancer, metabolic disease and neurodegenerative disease such as Parkinson`s disease. Among the core components of Wnt signaling pathway, we discovered that Dishevelled (Dsh) interacts with ULK1 and is phosphorylated by ULK1. Unexpectedly, the knockdown of ULK1 elicited a marked increase in Wnt/β-catenin signaling. Multiple ULK1 phosphorylation sites existed on Dsh and many of them were located on the PDZ-DEP region. By using evolutionarily well conserved Drosophila Dsh, we found that S239, S247 and S254 in the PDZ-DEP region are involved in phosphorylation of Dsh by ULK1. Among these, S247 and S254 were conserved in human Dsh. When phospho-mimetic mutants (2D and 2E Dsh mutants) of these conserved residues were generated and expressed in the eyes of the fruit flies, the activity of Dsh was significantly decreased compared to wild type Dsh. Through additional alanine scanning, we further identified that S239, S247, S254, S266, S376, S554 and S555 on full length Dsh were phosphorylated by ULK1. In regards to the S266A mutation located in the PDZ domain among these phosphorylated residues, our results suggested that Dsh forms an SDS-resistant high molecular weight complex with β-catenin and TCF in the nucleus in an S266 phosphorylation-dependent manner. Based on these results, we propose that ULK1 plays a pivotal role in the regulation of Wnt/β-catenin signaling pathway by phosphorylating Dsh.  相似文献   
284.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
285.
286.
The ventral subiculum (vSub), a representative output structure of the hippocampus, serves as a main limbic region in mediating the brain's response to stress. There are three subtypes of subicular pyramidal neurons based on their firing patterns: regular-spiking (RS), weak-bursting (WB) and strong-bursting (SB) neurons, located differently along proximal–distal axis. Here, we found that chronic social defeat stress (CSDS) in mice increased the population of SB neurons but decreased RS neurons in the proximal vSub. Specific blockers of T-type calcium channels inhibited the burst firings with a concomitant reduction of afterdepolarization, suggesting that T-type calcium channels underlie the burst-spiking activity. Consistently, CSDS increased both T-type calcium currents and expression of Cav3.1 proteins, a subtype of T-type calcium channels, in the proximal vSub. Therefore, we conclude that CSDS-induced enhancement of Cav3.1 expression increased bursting neuronal population in the vSub, which may contribute to stress-related behaviors.  相似文献   
287.
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.  相似文献   
288.
289.
Molecular Biology Reports - Mu-2-related death-inducing (MuD) gene is involved in apoptosis in tumor cells. Although we have previously produced mouse monoclonal antibodies (MAbs) that specifically...  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号