首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12320篇
  免费   948篇
  国内免费   29篇
  2023年   36篇
  2022年   131篇
  2021年   231篇
  2020年   116篇
  2019年   158篇
  2018年   240篇
  2017年   203篇
  2016年   369篇
  2015年   629篇
  2014年   781篇
  2013年   824篇
  2012年   998篇
  2011年   942篇
  2010年   555篇
  2009年   495篇
  2008年   689篇
  2007年   666篇
  2006年   647篇
  2005年   573篇
  2004年   547篇
  2003年   449篇
  2002年   388篇
  2001年   322篇
  2000年   274篇
  1999年   178篇
  1998年   95篇
  1997年   77篇
  1996年   81篇
  1995年   74篇
  1994年   68篇
  1993年   49篇
  1992年   121篇
  1991年   80篇
  1990年   96篇
  1989年   98篇
  1988年   69篇
  1987年   73篇
  1986年   51篇
  1985年   71篇
  1984年   61篇
  1983年   48篇
  1982年   66篇
  1979年   60篇
  1978年   40篇
  1977年   40篇
  1976年   42篇
  1975年   48篇
  1974年   50篇
  1973年   52篇
  1971年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K.  相似文献   
972.
Our previous study demonstrated that heat shock augmented vascular contraction. In the present study, we hypothesized that heat shock augments myosin phosphatase target-subunit (MYPT1) phosphorylation resulting in augmented vascular contraction. Endothelium-denuded rat aortic rings were mounted in organ baths, exposed to heat shock (42 degrees C for 45 min), and subjected to contraction 4 h after the heat shock followed by Western blot analysis for MLC(20) (the 20 kDa light chains of myosin II) or MYPT1. The contractile responses in both control and heat shock-treated aorta were inhibited by Y27632, an inhibitor of Rho-kinase. The level of the MLC(20) and MYPT1(Thr855) phosphorylation in response to KCl was higher in heat shock-treated aorta than that in timed-control. The increased MYPT1(Thr855) phosphorylation was inhibited by Y27632 (1.0 microM) in parallel with inhibition of MLC(20) phosphorylation and vascular contraction. These results indicate that heat shock augments MYPT1 phosphorylation resulting in augmented vascular contraction.  相似文献   
973.
Mycobacterium tuberculosis places an enormous burden on the welfare of humanity. Its ability to grow and its pathogenicity are linked to sulfur metabolism, which is considered a fertile area for the development of antibiotics, particularly because many of the sulfur acquisition steps in the bacterium are not found in the host. Sulfite reduction is one such mycobacterium-specific step and is the central focus of this paper. Sulfite reduction in Mycobacterium smegmatis was investigated using a combination of deletion mutagenesis, metabolite screening, complementation, and enzymology. The initial rate parameters for the purified sulfite reductase from M. tuberculosis were determined under strict anaerobic conditions [k(cat) = 1.0 (+/-0.1) electron consumed per second, and K(m(SO(3)(-2))) = 27 (+/-1) microM], and the enzyme exhibits no detectible turnover of nitrite, which need not be the case in the sulfite/nitrite reductase family. Deletion of sulfite reductase (sirA, originally misannotated nirA) reveals that it is essential for growth on sulfate or sulfite as the sole sulfur source and, further, that the nitrite-reducing activities of the cell are incapable of reducing sulfite at a rate sufficient to allow growth. Like their nitrite reductase counterparts, sulfite reductases require a siroheme cofactor for catalysis. Rv2393 (renamed che1) resides in the sulfur reduction operon and is shown for the first time to encode a ferrochelatase, a catalyst that inserts Fe(2+) into siroheme. Deletion of che1 causes cells to grow slowly on metabolites that require sulfite reductase activity. This slow-growth phenotype was ameliorated by optimizing growth conditions for nitrite assimilation, suggesting that nitrogen and sulfur assimilation overlap at the point of ferrochelatase synthesis and delivery.  相似文献   
974.
975.
The ExPortal of Streptococcus pyogenes is a membrane microdomain dedicated to the secretion and folding of proteins. We investigated the lipid composition of the ExPortal by examining the distribution of anionic membrane phospholipids. Staining with 10-N-nonyl-acridine orange revealed a single microdomain enriched with an anionic phospholipid whose staining characteristics and behavior in a cardiolipin-deficient mutant were characteristic of phosphatidylglycerol. Furthermore, the location of the microdomain corresponded to the site of active protein secretion at the ExPortal. These results indicate that the ExPortal is an asymmetric lipid microdomain, whose enriched content of anionic phospholipids may play an important role in ExPortal organization and protein trafficking.  相似文献   
976.
p38 mitogen-activated protein kinase (MAPK) activates a number of heat shock proteins (HSPs), including HSP27 and alpha(B)-crystallin, in response to stress. Activation of HSP27 or alpha(B)-crystallin is known to protect organs/cells by increasing the stability of actin microfilaments. Although our previous studies showed that 17beta-estradiol (E(2)) improves cardiovascular function after trauma-hemorrhage, whether the salutary effects of E(2) under those conditions are mediated via p38 MAPK remains unknown. Male rats (275-325 g body wt) were subjected to soft tissue trauma and hemorrhage (35-40 mmHg mean blood pressure for approximately 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were injected intravenously with vehicle, E(2) (1 mg/kg body wt), E(2) + the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt), or SB-203580 alone, and various parameters were measured 2 h thereafter. Cardiac functions that were depressed after trauma-hemorrhage were returned to normal levels by E(2) administration, and phosphorylation of cardiac p38 MAPK, HSP27, and alpha(B)-crystallin was increased. The E(2)-mediated improvement of cardiac function and increase in p38 MAPK, HSP27, and alpha(B)-crystallin phosphorylation were abolished with coadministration of SB-203580. These results suggest that the salutary effect of E(2) on cardiac function after trauma-hemorrhage is in part mediated via upregulation of p38 MAPK and subsequent phosphorylation of HSP27 and alpha(B)-crystallin.  相似文献   
977.
Optimal timing of therapeutic hypothermia for cardiac ischemia is unknown. Our prior work suggests that ischemia with rapid reperfusion (I/R) in cardiomyocytes can be more damaging than prolonged ischemia alone. Also, these cardiomyocytes demonstrate protein kinase C (PKC) activation and nitric oxide (NO) signaling that confer protection against I/R injury. Thus we hypothesized that hypothermia will protect most using extended ischemia and early reperfusion cooling and is mediated via PKC and NO synthase (NOS). Chick cardiomyocytes were exposed to an established model of 1-h ischemia/3-h reperfusion, and the same field of initially contracting cells was monitored for viability and NO generation. Normothermic I/R resulted in 49.7 +/- 3.4% cell death. Hypothermia induction to 25 degrees C was most protective (14.3 +/- 0.6% death, P < 0.001 vs. I/R control) when instituted during extended ischemia and early reperfusion, compared with induction after reperfusion (22.4 +/- 2.9% death). Protection was completely lost if onset of cooling was delayed by 15 min of reperfusion (45.0 +/- 8.2% death). Extended ischemia/early reperfusion cooling was associated with increased and sustained NO generation at reperfusion and decreased caspase-3 activation. The NOS inhibitor N(omega)-nitro-L-arginine methyl ester (200 microM) reversed these changes and abrogated hypothermia protection. In addition, the PKCepsilon inhibitor myr-PKCepsilon v1-2 (5 microM) also reversed NO production and hypothermia protection. In conclusion, therapeutic hypothermia initiated during extended ischemia/early reperfusion optimally protects cardiomyocytes from I/R injury. Such protection appears to be mediated by increased NO generation via activation of protein kinase Cepsilon; nitric oxide synthase.  相似文献   
978.
S-allylcysteine (SAC) is an organosulfur-containing compound derived from garlic. Studies have shown that garlic is beneficial in the treatment of cardiovascular diseases. This study aims to elucidate if SAC is responsible for this cardioprotection using acute myocardial infarction (AMI) rat models. In addition, we hypothesized that SAC may mediate cardioprotection via a hydrogen sulfide (H(2)S)-related pathway. Rats were pretreated with saline, SAC (50 mg x kg(-1) x day(-1)), SAC + propagylglycine (PAG; 50 mg + 10 mg x kg(-1) x day(-1)) or PAG (10 mg x kg(-1) x day(-1)) for 7 days before AMI induction and killed 48 h after. Our results showed that SAC significantly lowered mortality (12.5% vs. 33.3%, P < 0.05) and reduced infarct size. SAC + PAG- and PAG-treated rats had larger infarct sizes than controls (60.9 +/- 0.01 and 62.0 +/- 0.03%, respectively, vs. 50.0 +/- 0.03%; P < 0.05). Pretreatment with SAC did not affect BP, but BP was significantly elevated in SAC + PAG and PAG-treated groups (P < 0.05). In addition, plasma H(2)S levels and left ventricular cystathionine-gamma-lyase (CSE) activities were analyzed to investigate the involvement of H(2)S. CSE is the enzyme responsible for H(2)S production in the heart. SAC increased left ventricular CSE activity in AMI rats (2.75 +/- 0.34 vs. 1.23 +/- 0.16 micromol x g protein(-1) x h(-1); P < 0.01). SAC + PAG-treated rats had significantly lower CSE activity compared with the SAC-treated group (1.22 +/- 0.27 vs. 2.75 +/- 0.34 micromol x g protein(-1) x h(-1); P < 0.05). Similarly, SAC-treated rats had higher plasma H(2)S concentration compared with controls and the SAC + PAG-treated group. Protein expression studies revealed that SAC upregulated CSE expression (1.1-fold of control; P < 0.05), whereas SAC + PAG and PAG downregulated its expression (0.88-fold of control in both groups; P < 0.005). In conclusion, our study provides novel evidence that SAC is protective in myocardial infarction via an H(2)S-related pathway.  相似文献   
979.
Inhibitors of dipeptidyl peptidase IV (DPP-IV) have been shown to be effective treatments for type 2 diabetes. A series of beta-aminoacyl-containing cyclic hydrazine derivatives were synthesized and evaluated as DPP-IV inhibitors. One member of this series, (R)-3-amino-1-(2-benzoyl-1,2-diazepan-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one (10f), showed potent in vitro activity, good selectivity and in vivo efficacy in mouse models. Also, the binding mode of compound 10f was determined by X-ray crystallography.  相似文献   
980.
The preparation and cytotoxicity properties of a series of N(epsilon)-substituted triamine-linked acridine dimers are described. Most acridine dimer derivatives reveal highly potent in vitro cytotoxicity properties and DNA binding activity. Several acridine dimers were selected to study their action in vivo. These acridine dimers have demonstrated a narrow safe margin, as has adriamycin, but higher maximum tolerate dose (MTD) in comparison with that of adriamycin in ICR mice. The acridine dimers also demonstrated various anit-COLO 205 solid tumor activities in vivo. Compound 1 has shown the most potent solid tumor inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号